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RESUMO 

 

As decisões de alocação de recursos de longo prazo têm relação importante com a eficiência 

econômica, de forma que, pelo processo de seleção de projetos a serem financiados, determinadas 

iniciativas podem ser incentivadas ou desencorajadas. A fonte destes recursos pode ser, por 

exemplo, famílias, fundos de pensão, fundos soberanos e endowments de instituições sem fins 

lucrativos. Desta forma, o problema abordado refere-se ao estudo de métodos de otimização da 

construção de portfólios entre diferentes classes de ativos. As abordagens consideradas foram o 

modelo de Markowitz, o modelo de Michaud, um modelo de otimização robusta, o modelo de 

Rockafellar e Uryasev e um modelo de maximização da taxa de retorno. Cada um deles foi 

estudado, adaptado e implementado com o auxílio de programas de simulação computacional 

(Scilab). Os resultados são comparados em termos da relação entre risco e retorno e em termos de 

compatibilidade dos portfólios sugeridos com alocações reais de instituições financeiras. Por fim, 

concluiu-se que o resultado mais robusto em relação a variação de parâmetros iniciais e com maior 

aderência a situações reais de aplicação foi o modelo de Michaud. 

Palavras-chave: otimização de portfólio, teoria de portfólio, classes de ativos, 

otimização robusta, processos estocásticos.  



  



ABSTRACT 

 

There is an important correlation between decisions on long-term resource allocation 

and economic efficiency. By selecting projects to be financed, it’s possible to encourage or not 

certain initiative. Resources can come from families, pension funds, souverain funds and 

endowments from non-profit institutions. This study aims to compare methods to build an 

optimum portfolio among different asset classes. Different models were used to approach the 

problem, including Markowitz model, Michaud model, a model using robust optimization, 

Rockafellar e Uryasev model and a model to maximize return. Each one of them was studied, 

adapted and implemented using computer simulation software (Scilab). The results were 

evaluated in terms of risk-return relation and similarity to real financial institution portfolios. It 

was found that Michaud model had the most robust results given the uncertainty asset classes 

long-term return. 

Keywords: portfolio optimization, portfolio theory, asset classes, robust optimization, 

stochastic processes.   
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1 INTRODUÇÃO 

 

Problemas relacionados a decisões de alocação de recursos estão presentes em diversas 

áreas da engenharia, com ampla aplicação em otimização de investimentos de empresas, 

governos e famílias. Os recursos para investimentos em uma economia são limitados, de forma 

que é necessário haver uma seleção dentre os projetos a fim de delimitar aqueles que 

efetivamente recebem financiamento (Souza, 1996). Assim, a maneira com que essa seleção é 

feita tem fundamental importância na eficiência da economia, determinando as atividades a 

serem prioritariamente desenvolvidas. 

Os recursos para estes investimentos são muitas vezes provenientes de instituições que 

agrupam e gerem recursos de diferentes agentes. Uma forma de quantificar uma parcela deste 

mercado é através da base de investidores de fundos. Conforme visto no Gráfico 1, fundos de 

investimentos nos EUA têm fundações, endowments e fundos de pensão entre seus principais 

tipos de clientes. São aqui brevemente descritos os fundos de pensão, fundos soberanos, 

endowments e gestores de recursos de famílias: 

(a) Fundos de pensão são criados por trabalhadores de grandes empresas com o foco na 

otimização de gestão de recursos para a aposentadoria dos contribuintes. Este é o caso, por 

exemplo, do Previ, formado pelos trabalhadores do Banco do Brasil, ou do Petros, formado 

pelos trabalhadores da Petrobras. 

(b) Outra importante instituição de alocação de recursos são os fundos soberanos, que 

são instrumentos financeiros adotados pelo governo de alguns países para a administração de 

recursos provenientes tipicamente da venda de minérios e petróleo. Um dos mais relevantes é 

o da Noruega, com mais de 1 trilhão de dólares sob gestão. O Brasil havia criado um fundo 

semelhante em 2008, com o objetivo de suavizar o impacto de possíveis crises econômicas 

futuras. No entanto, em 2018 foi assinada uma medida provisória pela extinção do Fundo 

Soberano no Brasil (FSB) e uso dos recursos para equilíbrio das contas públicas. 

(c) A alocação por endowments também é uma aplicação bastante relevante. 

Endowments são tipos de fundos patrimoniais, geralmente associados a entidades sem fins 

lucrativos, cujo objetivo é alocar recursos de forma eficiente para que seu retorno possa 

sustentar o funcionamento da instituição, no limite, até a perpetuidade. Este modelo é bastante 

utilizado por instituições de ensino principalmente nos EUA. 

(d) As gestoras de famílias são estruturas montadas para administrar recursos de um 

número pequeno de famílias abastadas, com o objetivo de criar uma carteira personalizada de 

acordo com as necessidades individuais. Este trabalho de formatura foi desenvolvido junto a 
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um programa de estágio de um fundo de investimentos com esta estrutura, que tinha como 

objetivo principal ajudar famílias brasileiras a alocar recursos em gestores no exterior com uma 

visão prioritária de longo prazo. 

 

Gráfico 1 Base de investidores de fundos nos EUA. 

 

Fonte: Adaptado de Preqin Hedge Fund (2004) 

 

Portanto, a otimização da alocação de recursos é importante para a eficiência da 

economia no geral, de forma a priorizar melhores projetos. Além disso, algumas instituições 

aqui exemplificadas também se beneficiam, como é o caso de fundos de pensão para 

trabalhadores de grandes instituições, fundos soberanos para administração de recursos 

governamentais, e fundos de endowment para financiamento de instituições de ensino. 

 

1.1 OBJETIVO 

 

Este trabalho tem por objetivo aplicar ferramental matemático e de pesquisa operacional 

para a análise de modelos aplicados à otimização da alocação de recursos. 

Tradicionalmente a alocação é feita de maneira empírica, de forma que as informações 

sobre as perspectivas de comportamento de mercado definem a distribuições de recursos entre 

diferentes investimentos. O problema é que frequentemente essas visões alcançam apenas 

perspectivas de curto e médio prazo, resultando em alocações que podem ser bastante 

ineficientes sob a perspectiva de longo prazo. 
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A abordagem clássica para o problema é a aplicação do modelo de Markowitz. Sua ideia 

consiste em considerar não apenas as características individuais de cada investimento, mas a 

relação entre eles para a avaliação de um conjunto de alocações. 

No entanto, este modelo já bastante consolidada na literatura apresenta aplicação 

bastante limitada na realidade, uma vez que o comportamento dos resultados se afasta de 

requisitos necessários na gestão de um portfólio de investimentos. 

 Desta forma, são analisados e adaptados alguns modelos alternativos propostos na 

literatura com o objetivo de identificar limitações e domínios de aplicação, auxiliando na 

seleção das abordagens consideradas compatíveis com os portfólios de investimento de longo 

prazo. 

 

1.2 ESTRUTURA DO TRABALHO 

 

A estrutura deste trabalho segue uma sequência em que primeiro são definidos alguns 

conceitos básicos, para que posteriormente possam ser desenvolvidas os modelos e suas 

respectivas resoluções. Por fim, os resultados são avaliados através de uma comparação de 

desempenho e do confronto com alocações reais. Desta forma, pretende-se delimitar os 

domínios de aplicação de cada uma das abordagens. O trabalho se divide em capítulos, a saber: 

Capítulo 1: introdução do trabalho de formatura e apresentação dos seus objetivos e suas 

motivações. 

Capítulo 2: exposição de alguns conceitos básicos de fundamentação teórica, incluindo 

métricas de caracterização dos investimentos e do comportamento resultante de um conjunto 

de ativos. 

Capítulo 3: exposição de possíveis abordagens com aplicação de técnicas de otimização 

de pesquisa operacional para a solução do problema. Critérios de amostragem também são 

definidos para a obtenção de um conjunto de dados a ser utilizado no cálculo dos parâmetros 

dos modelos. Ao final deste capítulo é desenvolvida a estrutura lógica das simulações 

computacionais que auxiliam na resolução. 

Capítulo 4: comparação dos resultados dos modelos, envolvendo verificação e análise 

do desempenho das simulações e confronto com portfólios reais. 
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2 FUNDAMENTAÇÃO TEÓRICA 

 

Neste capítulo é desenvolvido o embasamento teórico a ser utilizado posteriormente 

para a definição do problema de otimização de alocação de recursos em horizontes de longo 

prazo. 

 

2.1 REVISÃO BIBLIOGRÁFICA 

 

O artigo de Markowitz (1952) foi pioneiro na proposição de uma nova abordagem para 

a alocação eficiente de recursos considerando um conjunto de investimentos. Sharpe (1964) 

também contribuiu para esta corrente de pensamento. Ambos tinham como ideia principal a 

utilização de métricas que possibilitassem a seleção de investimentos com base em critérios 

objetivos. Para isso utilizou-se a expectativa de retorno financeiro e risco associado à alocação, 

medidos através da média e da variância do conjunto histórico de preços. Estes trabalhos foram 

revisados por outros autores de forma que novas abordagens foram propostas na tentativa de 

ampliar o conjunto de aplicações possíveis. Alguns dos principais questionamentos foram sobre 

a definição de risco utilizada e sobre a consideração de risco e retorno determinísticos para cada 

investimento. 

Roman e Mitra (2009) chamam estes desenvolvimentos tradicionais de Teorias 

Modernas do Portfólio. Posteriormente, com o desenvolvimento da capacidade de 

processamento computacional, novas abordagens, chamadas pelos autores de Pós-Modernas, 

foram propostas. 

No contexto de questionamento da utilização da métrica de risco, a principal alternativa 

foi o modelo utilizado por Rockafellar e Uryasev (2000). A ideia é que não sejam consideradas 

dispersões de distribuição de retorno, mas a minimização da média de perdas acima de um 

determinado limite. A principal vantagem deste método está na possibilidade de aplicação em 

distribuições assimétricas, em que apesar da chance de perda ser pequena ela representa um 

valor significativo. 

Além disso, no contexto de consideração de incerteza nos parâmetros de simulação, são 

observadas na literatura duas principais alternativas. Uma delas utiliza matemática robusta, 

como descrito por Fabozzi (2007) e por Costa e Paiva (2002), adaptando o método tradicional 

de seleção de alocações por Markowitz. Outra abordagem é a estocástica, como a mostrada por 

Michaud (1998), cujo objetivo é estudar a sensibilidade dos resultados de um conjunto de 

simulações de Markowitz a variações nos parâmetros. 
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O modelo de Black e Litterman (1992) pretende conciliar a métrica de risco histórico à 

visão dos gestores sobre riscos intrínsecos de investimentos. Esta abordagem se restringe ao 

estudo de um único ativo e não do comportamento resultante de um conjunto. 

Por fim se destacam as abordagens de GARCH para determinação dos parâmetros de 

simulação, como as utilizadas por Ricetti (2013) e Jondeau (2006). Com isso é possível 

considerar conjuntos de retornos que se afastam de distribuições normais multivariadas. 

 

2.2 CONCEITOS BÁSICOS DE COMPOSIÇÃO DE PORTFÓLIO 

 

Os fundamentos teóricos para a caracterização de um portfólio incluem métricas 

individuais e métricas relacionadas ao conjunto dos investimentos. Desta forma, nesta seção 

são destacados os principais conceitos utilizados na descrição do problema e das soluções 

abordadas. 

 

2.2.1 Taxa de retorno de um investimento 

 

O retorno de um investimento se caracteriza pelo montante resultado da aplicação de 

determinado recurso durante certo intervalo de tempo. Se uma aplicação inicial de um valor 

monetário 𝑉𝑜 por um intervalo de tempo 𝑇 resulta, ao final deste intervalo, em um valor 𝑉𝑜 +

𝑚, têm-se que o retorno do investimento no intervalo 𝑇 é 𝑚. No entanto, esta definição dificulta 

a comparação entre possíveis alocações com diferenças no montante inicial (V𝑜) ou no tempo 

de investimento (𝑇). Desta maneira, se define a taxa de retorno (r), que independe do montante 

inicial ou do tempo de investimento. 

Definição 1: a taxa de retorno (r) é a porcentagem de incremento de valor obtida em 

relação ao valor inicial de um investimento, considerando um intervalo de tempo fixo. 

𝑟 = (
𝑉𝑜 +𝑚

𝑉𝑜
)
1/𝑇

− 1 = (
𝑉𝑓

𝑉𝑜
)
1/𝑇

− 1 

Onde, 

- 𝑟 é a taxa de retorno da alocação; 

- 𝑉𝑜 é o valor monetário inicial de alocação; 

- 𝑉𝑓 é o valor monetário final de alocação; 

- 𝑚 é o incremento monetário obtido em virtude da alocação; 

- 𝑇 é o intervalo de tempo em que 𝑉𝑜 ficou alocado medido na unidade de tempo fixa 

adotada. 
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A definição de retorno linear aqui adotada é uma simplificação do modelo logarítmico. 

 

2.2.2 Métricas de risco de um investimento 

 

O risco no âmbito de finanças pode ser definido em termos da variabilidade dos retornos 

observados em um investimento em relação à expectativa do investidor (Damodaran, 2008). 

Tal análise pode ser feita considerando as características intrínsecas de cada alocação, como 

fatores operacionais, de crédito, de liquidez, de mercado ou de legislação. Pode-se também 

medir o risco de um determinado investimento através do estudo de suas taxas de retorno 

históricas. Este texto se debruça apenas sobre esta última métrica. 

Considerando, pois, apenas métricas que utilizam o conjunto histórico de taxas de 

retorno, ainda há formas diferentes de medir o risco de um investimento. Artzer (1999) 

estabelece princípios importantes para análise de estimadores de risco, relacionados a sua 

coerência (vide Apêndice B). Desta forma, o autor define risco como uma função que respeita 

as seguintes propriedades. 

Sendo, 

- 𝑓(𝑥) a função risco de um certo investimento; 

- 𝑟(𝑥) a função retorno de um certo investimento; 

- 𝐴 um certo investimento; 

- 𝐵 um outro investimento diferente de 𝐴; 

- 𝑉𝐴 valor inicial alocado em 𝐴; 

- 𝑉𝐵 valor inicial alocado em 𝐵; 

- 𝜇 um escalar, 

as seguintes propriedades se verificam para estimadores de risco coerentes. 

(1) Subaditividade: a diversificação do portfólio reduz seu risco. 

𝑓(𝑉𝐴, 𝑉𝐵) ≤ 𝑓(𝑉𝐴) + 𝑓(𝑉𝐵) 

(2) Monotonicidade: se os ganhos para um investimento 𝐴 forem maiores que os ganhos 

para um investimento 𝐵 para todos os cenários possíveis então o risco de 𝐴 é maior que o risco 

de 𝐵. 

𝑟(𝑉𝐴) ≤ 𝑟(𝑉𝐵)  ⇒  𝑓(𝑉𝐴) ≤ 𝑓(𝑉𝐵) 

(3) Homogeneidade de grau 1: o aumento da proporção de alocação em um certo 

investimento eleva seu risco na mesma proporção. 

𝑓(𝜇𝑉𝐴) = 𝜇𝑓(𝑉𝐴) 
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(4) Invariância por translação: o aumento da proporção de alocação em um certo 

investimento eleva seu risco na mesma quantidade 

𝑓(𝜇 + 𝑉𝐴) = 𝜇 + 𝑓(𝑉𝐴) 

Definidas as características para uma métrica coerente de risco, são, então, descritos três 

estimadores que utilizam um conjunto de taxas de retorno históricas: variância (a), Var (b) e 

CVar (c). 

(a) O estimador tradicionalmente empregado para quantificar o risco de um 

investimento é a variância de um conjunto histórico de retornos, chamado tipicamente de 

volatilidade. Considerando a aproximação do conjunto histórico de taxas de retorno por uma 

distribuição normal, pode-se calcular a variância esperada para o portfólio (Luenberger,1997). 

𝑢̂𝜎 = 𝜎
2(𝑟) 

Em que: 

- 𝑢̂𝜎 é estimador de risco a partir da variância de taxas de retorno históricas; 

- 𝜎2(𝑥) é a variância de 𝑥.  

No entanto, com o avanço dos trabalhos nesta área, houve questionamento quanto à 

adoção desta métrica de risco. Segundo Wipplinger (2007), tal métrica considera a variação da 

taxa de retorno não apenas abaixo do valor esperado, mas também acima, penalizando ganhos 

superiores ao valor esperado. Desta forma, considera-se como risco ganhos acima da média 

histórica, o que tipicamente é vantajoso em uma alocação. Ainda segundo o autor, tal métrica 

suaviza o impacto da magnitude da cauda da distribuição, o que também prejudica a 

representação do risco do investimento. 

Compare, por exemplo, as duas distribuições de probabilidades dos retornos mostradas 

no Gráfico 2. Ambas possuem a mesma variância, e, portanto, o mesmo risco através da métrica 

de volatilidade. No entanto, a curva assimétrica negativa poderia ser preterida pelo agente 

alocador, em função da limitação de ganhos e da maior dispersão de perdas abaixo da média. 
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Gráfico 2 Curvas de distribuição de probabilidade assimétricas 

  

Fonte: Elaborado pela autora  

 

(b) Segundo Artzner (1999) o Valor em Risco, conhecido como Var em função da 

nomenclatura em língua inglesa (Value at Risk), surgiu como alternativa. Este estimador 

consiste na identificação da mínima taxa de retorno (perda máxima 𝑝) da distribuição de 

probabilidade dos retornos considerando um certo nível de confiança (1 − 𝛽), conforme 

representado no Gráfico 3 e exibido na formulação a seguir. 

𝜏(𝑟) = ∫ 𝑔(𝑟)𝑑𝑟
 

𝑓(𝑟)≤𝑝

 

𝑉𝑎𝑟𝛽 = min{𝑟 | 𝜏(𝑟) ≥ 𝛽} 

Onde, 

- 𝑟 é o retorno de um investimento; 

- 𝑔(𝑟) é a distribuição de probabilidade de taxas de retorno de um dado investimento; 

- 𝑓(𝑟) é a distribuição de probabilidade de taxas de retorno do investimento considerado; 

- 𝜏(𝑟) é a distribuição de probabilidade acumulada das taxas de retorno para um dado 

investimento; 

- 𝛽 é o complementar do nível de confiança, representando a probabilidade de taxa de 

retorno menor que a perda máxima. 

 

Distribuição assimétrica negativa Distribuição assimétrica positiva
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Gráfico 3 Representação do valor em risco 

 

Fonte: Elaborado pela autora 

 

No entanto, o Var é um estimador que não satisfaz as condições de coerência 

supracitadas. Além disso, há diversas críticas quanto a limitações de estimativa de tamanho de 

perda. É possível, por exemplo, que haja um cenário de perda bastante considerável, mas com 

uma baixa probabilidade, o que pode ter consequências graves para expectativa de taxa de 

retorno do investimento (PFlug, 2000). 

(c) Desta forma, Rockafellar et al. (2000) utilizou outro estimador de risco, o Valor em 

Risco Condicional, conhecido como CVar em função da nomenclatura em língua inglesa 

(Conditional Value at Risk). Trata-se da média dos valores da distribuição de probabilidade 

considerando apenas taxas de retorno abaixo do valor em risco para um dado 𝛽, que pode ser 

formulado da seguinte maneira. 

𝐼𝛽 =
1

𝛽
∫ 𝑓(𝑟)𝑔(𝑟)𝑑𝑟

 

𝑓(𝑟)≤𝑝(𝛽)

 

Onde, 

- 𝐼𝛽 é o Valor Condicional em Risco para um dado 𝛽. 

Desta forma, foram exibidas diferentes formas de medição de risco de um único ativo. 

No entanto, para o estudo pretendido é necessário descrever nas subseções seguintes o 

comportamento resultante não de apenas um, mas de um conjunto de investimentos 

simultâneos. 
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2.2.3 Modelos de composição dos portfólios de investimento 

 

Dado um valor monetário inicial disponível para investimento (𝑀𝑜), pode-se decidir 

pela sua alocação entre diferentes ativos, dentro de um conjunto de 𝑁 ativos. Os valores 

alocados em cada um desses ativos (𝑀1, 𝑀2, 𝑀3, ..., 𝑀𝑁) formam um portfólio. Dessa forma, a 

caracterização da composição deste portfólio pode ser feita através da razão entre uma alocação 

específica (𝑀𝑖) e valor monetário total alocado (𝑀𝑜). 

Definição 2: dados 𝑁 investimentos, caracteriza-se a composição de um portfólio pelo 

vetor 𝒘𝜖ℝ𝑁 tal que cada um de seus elementos representa a proporção do valor monetário de 

um investimento em relação ao total do portfólio. 

𝑤𝑖 =
𝑀𝑖
𝑀𝑜
   𝑝𝑎𝑟𝑎 𝑖 = 1,2, … , 𝑁 

Onde,  

- 𝑤𝑖 é a proporção da alocação na estratégia 𝑖 em relação ao valor total do portfólio; 

- 𝑀𝑖 é o valor monetário alocado na estratégia 𝑖; 

- 𝑀𝑜 é o valor monetário total do portfólio; 

- 𝑁 é o número de ativos que constituem o portfólio. 

Cada ativo possui características diferentes e respostas distintas a eventos e condições 

de mercado. Desta forma, através da combinação destes ativos, busca-se construir uma carteira 

cujo comportamento se adeque aos interesses e necessidades do investidor. Ou seja, além da 

consideração do comportamento das estratégias individualmente, considera-se o efeito da sua 

combinação em um portfólio. 

Um portfólio pode ter alocações negativas (𝑤𝑖 < 0), o que resulta em uma taxa de 

retorno oposta ao observado na alocação positiva. Uma das maneiras de se fazer isso através do 

mercado de capitais é pela venda de um ativo alugado seguida de posterior recompra. 

O somatório da proporção de todas as alocações é conhecido como Exposição Líquida, 

que constitui uma métrica que representa a porcentagem do montante total do portfólio que está 

diretamente relacionado com o mercado. Já o somatório do valor absoluto das proporções de 

todas as alocações é chamado de Exposição Bruta, ou seja, a proporção do valor do portfólio 

que efetivamente está alocado em alguma estratégia (Capelletto, 2007). 

𝐸𝐿 =∑𝑤𝑖

𝑁

𝑖=1

 𝐸𝐵 =∑|𝑤𝑖|

𝑁

𝑖=1

 

Onde, 
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- 𝐸𝐿 é a exposição líquida; 

- 𝐸𝐵 é a exposição bruta. 

 

2.2.4 Métricas de risco e retorno para um portfólio 

 

Nas subseções anteriores foram definidas métricas de risco e taxa de retorno para um 

ativo. Nesta subseção, pretende-se expandir tais definições para o comportamento resultante de 

um portfólio de investimentos. 

Considerando um portfólio, a taxa de retorno resultante é obtida pela média ponderada 

das taxas de retorno de cada uma das alocações, conforme descrito pela formulação a seguir. 

𝑟𝑝 = 𝒘𝒓′ 

Onde, 

- 𝑟𝑝𝜖 ℝ
 
é a taxa de retorno resultante do portfólio; 

- 𝒘 𝜖 ℝ𝑁 é o vetor com as proporções de cada alocação; 

- 𝒓 𝜖 ℝ𝑁 é o vetor com as taxas de retorno para cada alocação. 

No entanto, no caso do risco resultante de um portfólio, não é suficiente a ponderação 

dos valores individuais para cada ativo. É necessário que se considere a dependência entre os 

conjuntos de taxa de retorno, o que pode ser feito através da correlação. 

Desta forma, é importante verificar qual a relação esperada entre as taxas de retorno de 

cada um deles. Tipicamente, a métrica utilizada é o coeficiente de correlação linear, que mede 

o grau de relacionamento linear entre dados emparelhados de uma amostra. 

Onde, 

- 𝜌𝑖𝑗 é coeficiente de correlação linear entre as taxas de retorno dos investimentos 𝑖 e 𝑗; 

- 𝜎𝑖𝑗 é a covariância entre as taxas de retorno dos investimentos 𝑖 e 𝑗. 

Considere, por exemplo, o caso hipotético de um portfólio que apresente investimentos 

em refinarias de petróleo e companhias aéreas. Com a elevação do preço do petróleo, há 

elevação da taxa de retorno das refinarias e redução da taxa de retorno das companhias aéreas. 

Neste caso, a correlação entre os dois ativos é negativa, de forma que a alocação em conjunto 

tende a reduzir os riscos em relação às alocações individuais. Desta forma, uma métrica 

importante é a correlação entre a taxa de retorno de refinarias e companhias aéreas, que indica 

uma proporção de alocação que pode reduzir a interferência do preço do petróleo no 

comportamento portfólio. Através do estudo de relações como estas, gestores de portfólio 
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conseguem se aproveitar das diferenças de comportamento dos ativos e reduzir o risco de um 

portfólio. 

Ressalta-se, no entanto, que o coeficiente de correlação linear é uma métrica aproximada 

que nem sempre representa de forma aderente a relação entre taxas de retorno de dois 

investimentos. Um exemplo é o caso de ações e crédito, em que historicamente há momentos 

de alta correlação positiva e outros de correlação negativa. Esta diferença de comportamento 

pode ser explicada, em parte, pelo maior impacto da taxa de juros nos ativos de crédito, o que 

é menos evidente no caso de ações. No Gráfico 4 é mostrada a correlação de taxas de retorno 

diárias para ações e crédito nos EUA, considerando intervalos de 60 e 120 dias, tal que 

intervalos consecutivos divergem entre si de um dia. Desta forma, a utilização de correlação 

linear para descrever a relação entre ativos em casos como estes pode ser questionada. 

No caso de as distribuições estudadas se afastarem do modelo de correlação linear, há 

várias abordagens alternativas. Entre elas Embrechts (2001) recomenda a utilização da Função 

de Copula para a representação de dependências mais gerais, não necessariamente lineares. 

 

Gráfico 4 Correlação entre ações (S&P500) e crédito (S&P500 HY Corp Bond) 

 

Fonte: Elaborado pela autora utilizando dados do terminal Bloomberg 

 

Desta forma, esta relação entre os ativos pode ser usada para o cálculo do estimador de 

risco resultante do portfólio. Assim, as mesmas métricas descritas anteriormente para ativos 

individuais são agora retomadas para caracterizar o portfólio. 

Definição 3: à variância de um conjunto histórico de taxas de retorno resultantes de um 

portfólio dá-se o nome de variância do portfólio. 

-40%

-20%

0%

20%

40%

60%

80%

dez-08 dez-09 dez-10 dez-11 dez-12 dez-13 dez-14 dez-15 dez-16 dez-17

C
o

ef
ic

ie
n

te
 d

e 
co

rr
el

aç
ão

 li
n

ea
r

Correlação histórica entre taxas de retorno diárias de crédito e ações

Janelas de 60 dias Janelas de 120 dias



34 

 

𝜎𝑝
2 = 𝜎 

2(𝑟𝑝) = 𝒘′𝝈𝒘 

Onde, 

- 𝑟𝑝 é a taxa de retorno resultante do portfólio; 

- 𝜎𝑝 é o desvio padrão do portfólio;  

- 𝝈 𝜖 ℝ𝑁 ×ℝ𝑁 é a matriz de covariância, formada pela covariância entre os ativos, tal 

que: 

𝝈 = [

𝜎11 ⋯ 𝜎1𝑁
⋮ ⋱ ⋮
𝜎𝑁1 ⋯ 𝜎𝑁𝑁

]. 

Definição 4: o Valor em Risco de um portfólio consiste na mínima taxa de retorno 

(perda máxima 𝑝) da distribuição de probabilidade resultante de um conjunto de ativos dado 

um certo nível de confiança (1 − 𝛽). 

 

𝜏(𝒘, 𝑟𝑝) = ∫ 𝑔(𝑟𝑝)𝑑𝑟𝑝

 

𝑓(𝒘,𝑟𝑝)≤𝑝

 

𝑉𝑎𝑟𝛽(𝒘) = min{𝑟𝑝 | 𝜏(𝒘,𝑟𝑝) ≥ 𝛽} 

Onde, 

- 𝑟𝑝 é a taxa de retorno resultante do portfólio; 

- 𝑔(𝑟𝑝) é a distribuição de probabilidade de taxas de retorno de um dado portfólio 𝒘; 

- 𝑓(𝒘, 𝑟𝑝) é a distribuição de probabilidade de taxas de retorno em função da alocação; 

- 𝜏(𝒘, 𝑟𝑝) é a distribuição de probabilidade acumulada das taxas de retorno para um 

dado portfólio 𝒘;  

- 𝛽 é o complementar do nível de confiança, representando a probabilidade de taxa de 

retorno menor que a perda máxima; 

- 𝑉𝑎𝑟𝛽(𝒘) é o Valor em Risco para um nível de confiança (1 − 𝛽). 

Definição 5: Valor em Risco Condicional de um portfólio é a média dos valores da 

distribuição de probabilidade das taxas de retorno resultantes do portfólio que se localizam 

abaixo do valor de risco para um dado 𝛽. 

𝐶𝑉𝑎𝑟𝛽(𝒘) =
1

𝛽
∫ 𝑓(𝒘, 𝑟𝑝)𝑔(𝑟𝑝)𝑑𝑟𝑝

 

𝑓(𝒘,𝑟𝑝)≤𝑝(𝒘,𝛽)

 

Onde, 

- 𝐶𝑉𝑎𝑟𝛽(𝒘) é CVar para um dado 𝛽 e um portfólio com alocações 𝒘. 
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2.3 AS DECISÕES DE INVESTIMENTO 

 

Neste texto, optou-se pela aplicação da análise dos portfólios com ativos no mercado de 

capitais. Desta forma, nesta seção são definidos alguns parâmetros bastante utilizados no setor 

para a caracterização e agrupamento dos investimentos. Posteriormente são mostradas maneiras 

de descrever e comparar portfólios em termos de suas características de risco e expectativa de 

taxa de retorno. 

 

2.3.1 Liquidez de um ativo 

 

A liquidez de um ativo refere-se ao tempo necessário para a movimentação de recursos 

entre os investimentos diferentes. Esta característica, em muitos casos, depende de regras que 

limitam ou dificultam a alocação e o resgate de recursos em certos ativos. 

Desta forma, investimentos que exigem menor intervalo de tempo são considerados 

mais líquidos. Por outro lado, investimentos que requerem um período maior de alocação são 

considerados menos líquidos. No limite, investimentos ilíquidos são aqueles em que não é 

possível o resgate da alocação antes da finalização do projeto, cujo prazo é geralmente longo. 

Nos casos de investimentos ilíquidos as regras para devolução de recursos são 

consequência do período de desenvolvimento de certo projeto. Quando se opta por realizar a 

alocação, normalmente é firmado um compromisso no qual o recurso estará disponível quando 

necessário. Durante este período não se pode alocar em outros investimentos com muitas 

restrições de liquidez sob a pena de restrição da disponibilidade. Além disso, os projetos, em 

geral, requerem recursos gradualmente durante seu desenvolvimento, de forma que a 

disponibilidade deve seguir esta demanda. Isto é, a chamada de capital, nome dado a esta 

demanda de recursos, acompanha as necessidades do projeto. 

A devolução de recursos no caso de investimentos ilíquidos também segue o andamento 

do projeto. Desta forma, não é possível realizar resgates conforme desejado, mas apenas 

conforme ocorre a remuneração do projeto. 

Nos casos de investimentos líquidos, a estratégia também pode demandar certo tempo 

para o desenvolvimento, de forma que podem ser definidas regras para a alocação e o resgate 

de recursos. Quando se decide pelo investimento, primeiramente é feito um estudo para 

captação e avaliação de oportunidades. Selecionadas as alternativas, é necessário verificar se 

há possibilidade de alocação, uma vez que algumas estratégias não podem ser desenvolvidas 

com um volume muito grande de recursos. Um exemplo disso é o caso do investimento em 
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empresas pequenas, que geralmente têm uma capacidade limitada de absorção de recursos 

mantendo a taxa de retorno. Dessa forma, pode-se limitar o total de investimento em 

determinada estratégia, o que comumente prioriza os recursos dos agentes que já tem alocação. 

Diferentemente dos ilíquidos, no caso de investimentos líquidos é possível realizar o 

resgate de recursos, sujeito a algumas restrições, uma vez que é necessário que haja agentes que 

queiram comprar, preferencialmente a um preço favorável. Pode ser delimitado um limite 

mínimo de tempo entre a alocação e o resgate, o que pode ser proibido ou penalizado por uma 

taxa. Também é comum a necessidade de aviso de resgate com certa antecedência, além da 

devolução em parcelas distribuídas no tempo. Ademais, há outros mecanismos que procuram 

incentivar a manutenção do investimento. Um exemplo é caso de cobrança proporcional à taxa 

de retorno apenas nos casos de aumento do valor do investimento além do máximo histórico 

desde o início da alocação. Dessa forma, quando a estratégia perde valor não há estímulo para 

resgate até sua recuperação. 

 

2.3.2 Duração de um ativo 

 

Outro critério utilizado para caracterizar ativos é a sensibilidade a variações da taxa de 

juros, o que pode ser medido através da duração de um investimento, conhecido em língua 

inglesa como duration. Desta forma, alocações de duração alta têm alteração mais significativa 

da taxa de retorno em razão de mudanças da taxa de juros. Já ativos que são menos afetados 

por alterações na taxa de juros têm uma duração mais baixa. 

A duração consiste no tempo médio em que o recurso fica alocado. Este tempo, no 

entanto, não depende apenas do início e do final de um contrato de investimento, uma vez que 

há ativos em que ocorre o recebimento de valores monetários intermediários antes do final do 

contrato. Assim, a duração é utilizada como métrica que pondera o tempo em que o dinheiro 

está investido considerando estes pagamentos intermediários. A formulação utilizada neste 

texto é a de Macaulay (Cox, 1979), representada na Figura 1 e em equação a seguir. 

𝑀𝐷 =
1

𝑉𝑜
(∑

𝑖 𝑃𝑀𝑇𝑖
(𝑖 + 𝑟)𝑖

𝑇

𝑖=1

+
𝑉𝑓

(𝑖 + 𝑟)𝑖
) 

Onde, 

- 𝑀𝐷 é a duração de Macaulay; 

- 𝑃𝑀𝑇𝑖 é o pagamento intermediário que ocorre no instante 𝑖 contido no intervalo 𝑇. 
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Figura 1 Fluxo de entrada e saída de valores monetários no tempo 

 

Fonte: Elaborado pela autora 

 

No Gráfico 5, foram considerados investimentos com mesmas taxas de retorno, mas 

com durações diferentes. É possível observar que sensibilidade destas alocações a alterações na 

taxa de juros depende da duração do ativo. 

 

Gráfico 5 Sensibilidade a variação de taxa de juros. Foram considerados pagamentos constantes e 

equidistantes com devolução do principal ao final do período de investimento. 

 

Fonte: Elaborado pela autora 

 

 

Ta
xa

 d
e 

re
to

rn
o

Taxa de juros

Duração

Período maior de investimento Período intermediário de investimento

Período menor de investimento



38 

 

2.3.3 Classes de ativos 

 

Uma das formas de construção de um portfólio é o agrupamento de alocações com 

expectativa de comportamento similar (Focardi, 2001). Dessa forma, ao invés de a decisão de 

alocação ser tomada para cada ativo individualmente, ela é tomada considerando conjuntos com 

características similares. 

Os critérios de agrupamento utilizados neste texto e descritos a seguir são a expectativa 

de risco-retorno, a liquidez, a duração, a localização geográfica, a correlação com outras classes 

de ativos e o nível de responsabilização do investidor. Tais critérios são posteriormente 

aplicados para o mercado de capitais de forma a definir classes de ativos que serão consideradas 

na simulação. 

(a) Um critério de agrupamento tipicamente utilizado é a expectativa de risco-retorno 

da alocação. Esta expectativa pode ser medida através de notas, chamadas de grau de 

investimento, as quais usualmente são atribuídas por agências especializadas, como Moody’s, 

S&P e Fitch. 

(b) A liquidez também pode ser utilizada como critério de agrupamento, de forma que 

investimentos com maior facilidade de alocação ou resgate são separados daqueles com maior 

dificuldade. No limite também são considerados investimentos ilíquidos, os quais não podem 

ser resgatados antes do final do projeto. 

(c) Pode ser considerada a duração do investimento como critério de agrupamento. 

Desta forma, alocações com maior ou menor sensibilidade a variações de taxa de juros podem 

ser classificados em classes de ativos distintas. 

(d) A localização geográfica também interfere no comportamento de um ativo. 

Investimentos em mercados emergentes são tipicamente sujeitos a fatores de risco diferentes 

daqueles presentes em mercados ditos desenvolvidos. 

(e) A correlação com outras classes de ativos pode também ser utilizada para classificar 

investimentos. Um exemplo são ativos de crédito, que englobam tanto investimentos altamente 

correlacionados com o mercado acionário, como é o caso da emissão de dívida de empresas, 

quanto outros bastante descorrelacionados do mercado no geral, como é o caso de crédito para 

seguro de vida. Desta forma, é possível que haja interesse na separação destes dois grupos de 

ativos. 

(f) Por fim, é comum a distinção de nível de responsabilização do investidor, que pode 

ser feita através da separação de ativos de crédito e ação. No caso da ação há propriedade de 

parcela da companhia e, portanto, maior nível de responsabilização sobre seu desempenho. Já 
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no caso de crédito, trata-se de um empréstimo à companhia, com menos responsabilidades e 

maior prioridade no recebimento dos pagamentos. 

Além destes critérios utilizados neste texto, também é comum a classificação em relação 

à expectativa de comportamento do investimento frente às condições de mercado. A 

diferenciação entre classes de ativos também pode ser feita através da direção e a magnitude da 

resposta dos investimentos a mudanças como inflação, crescimento do PIB, preço do petróleo, 

câmbio, entre outros. 

Consideradas estas classes de ativos, cabe ressaltar, no entanto, que há variações de 

comportamento entre cada um dos ativos que as compõem. Isto é, a consideração de um 

subconjunto de investimentos dentro de uma classe de ativos pode gerar diferença de 

comportamento no portfólio, chamada de dispersão. Desta forma, podem ser identificadas duas 

principais fontes de retorno de uma alocação: a distribuição entre as classes de ativos e a 

distribuição dentro de cada classe de ativos. À taxa de retorno da média dos elementos que 

compõe uma classe de ativos, que é normalmente estimada através de índices, atribui-se o nome 

de beta. Já ao retorno incremental resultante de uma seleção de investimentos dentro de uma 

classe de ativos dá-se o nome de alpha. 

 

2.3.4 Índice sharpe para ativos de um portfólio 

 

Uma das abordagens mais simples para a seleção de investimentos a comporem um 

portfólio é a consideração de estratégias com melhor relação entre risco e retorno, medidos 

através do Índice Sharpe. Trata-se da razão entre retorno excedente e volatilidade de um ativo 

para um determinado período (Sharpe, 1994), conforme formulação a seguir. 

𝐼𝑆 =
𝑟 − 𝑟𝑓

𝜎
 

Onde, 

- 𝐼𝑆 é o Índice Sharpe; 

- 𝑟 é a taxa de retorno esperada para o investimento; 

- 𝑟𝑓 é o retorno atribuído ao investimento considerado, no limite, livre de risco; 

- 𝜎 é o desvio padrão das taxas de retorno históricas do investimento. 

A ideia desta abordagem é calcular o Índice Sharpe de cada uma das classes de ativos 

consideradas. Este resultado, em tese, fornece uma relação de risco e retorno dos investimentos, 

de maneira que aqueles que apresentam maiores valores de Índice Sharpe são selecionados para 
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comporem o portfólio. No exemplo da Gráfico 6, as classes de ativos em que recursos seriam 

prioritariamente alocados seriam as indicadas pelos números 4 e 7. 

 

Gráfico 6 Índice Shape de algumas classes de ativos 

 

Fonte: Elaborado pela autora 

 

No entanto, a utilização de tal critério apresenta limitações importantes em aplicações 

reais. Uma delas é que este método de construção de portfólio considera implicitamente que as 

taxas de retornos das diferentes classes de ativos são independentes, ignorando a possível 

correlação existente entre elas. 

Além disso, a relação entre retorno excedente e volatilidade é suposta linear, o pode não 

ser necessariamente verdade. Ao adotar essa simplificação incorre-se no risco de priorizar 

inconscientemente classes de ativos com menor ou maior risco. 

Dadas estas limitações, outro método de avaliação de portfólios foi considerado na 

subseção seguinte. 

 

2.3.5 Fronteira eficiente de alocação 

 

Como alternativa à abordagem anterior, portfólios podem ser representados em um 

plano formado por nível de risco na abcissa e taxa de retorno na ordenada. Considere um 

conjunto formado por todos os portfólios possíveis compostos por um grupo limitado de ativos 

(vide representação deste conjunto no plano retorno-risco no Gráfico 7). Considere agora um 

subconjunto destes portfólios formados por todos aqueles pontos que, para cada nível de 

volatilidade representam a maior taxa de retorno possível proveniente de combinações destes 

ativos. À curva formada pela representação dos portfólios deste subconjunto no plano retorno-

0%

10%

20%

30%

40%

50%

60%

70%

1 2 3 4 5 6 7 8 9

Classes de ativos

Índice Sharpe



41 

 

risco dá-se o nome de fronteira eficiente. Seu conceito já foi bastante explorado na literatura 

por apontar as potencialidades máximas da combinação de investimentos dentro de um 

portfólio. 

O Gráfico 7 evidencia que as relações de risco retorno ótimas se afastam da hipótese 

linear considerada na adoção do índice Sharpe. Neste caso, portfólios com maior risco seriam 

prejudicados na análise, ainda que estejam bastante próximos da fronteira eficiente. Dessa 

forma, neste texto, optou-se pela utilização da fronteira eficiente como forma de representação 

das sugestões de alocação.  

 

Gráfico 7 Plano de representação dos portfólios e da fronteira eficiente. Em classes de ativos individuais 

são mostrados os portfólios 100% alocados em apenas uma classe de ativos. 

 

Fonte: Elaborado pela autora 

 

A fronteira eficiente é delimitada inferiormente pelo ponto de mínimo risco e 

superiormente pelo ponto de máxima taxa de retorno, de forma que os intervalos considerados 

estão contidos em 𝑆, conforme descrito a seguir (vide Gráfico 8). 

𝑆 = {(𝑋, 𝑌)|𝑋𝜖 [𝜎𝑝𝑚𝑖𝑛; 𝜎𝑝𝑚𝑎𝑥]  ∩  𝑌𝜖 [𝑟𝑝𝑚𝑖𝑛; 𝑟𝑝𝑚𝑎𝑥]} 

Onde, 

- 𝑆 é uma região delimitado pelos pontos de mínimo risco e máxima taxa de retorno em 

que a fronteira eficiente está contida; 

- (𝜎𝑝𝑚𝑖𝑛, 𝑟𝑝𝑚𝑖𝑛) é o ponto de mínima volatilidade resultante do portfólio; 

- (𝜎𝑝𝑚𝑎𝑥, 𝑟𝑝𝑚𝑎𝑥) é o ponto de máxima taxa de retorno resultante do portfólio. 
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Gráfico 8 Delimitações da Fronteira Eficiente 

 

Fonte: Elaborado pela autora 

 

A definição da fronteira eficiente, no entanto, ainda não é suficiente para a delimitação 

do portfólio a ser selecionado para determinado agente. Esta curva define apenas um conjunto 

de portfólios considerados eficientes, mas não a alocação específica a ser utilizada. Desta forma, 

na subseção seguinte são consideradas alternativas para a representar essa disposição do 

investidor em alocar recursos em risco. 

 

2.3.6 Risco de alocação do investidor 

 

São consideradas neste texto três alternativas para a incorporação da disposição a risco 

do investidor, sendo elas o nível de risco máximo (a), o perfil de risco (b) e a função utilidade 

(c). 

(a) Uma das alternativas é a definição um nível máximo de risco (𝜎𝑢𝑡𝑚𝑎𝑥) para o qual o 

agente está disposto a alocar recursos. Desta forma, o portfólio selecionado é aquele definido 

pela intersecção entre a fronteira eficiente e a vertical de volatilidade máxima pretendida (vide 

Gráfico 9). 
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Gráfico 9 Seleção de portfólio baseado em nível máximo de risco 

 

Fonte: Elaborado pela autora 

 

(b) Pode-se também utilizar o conceito de perfil de risco para representar a disposição 

do investidor a alocar recursos em risco. Neste caso, ao invés de determinar uma volatilidade 

máxima, define-se uma proporção entre os níveis de mínima e máxima volatilidade da fronteira 

eficiente na qual o investidor pretende localizar seu portfólio. Neste texto o conceito é tratado 

como a razão entre o nível de risco incremental máximo permitido pelo agente e nível de risco 

incremental máximo permitido pelo portfólio (vide Gráfico 10). 

𝑃𝐹 =
𝜎𝑢𝑡𝑚𝑎𝑥 − 𝜎𝑝𝑚𝑖𝑛
𝜎𝑝𝑚𝑎𝑥 − 𝜎𝑝𝑚𝑖𝑛

 

Onde: 

- 𝑃𝐹 é o perfil de risco do investidor; 

- 𝜎𝑢𝑡𝑚𝑎𝑥 é o valor máximo que o estimador de risco pode alcançar mantendo a 

disposição de alocação de capital do agente. 

Considere, por exemplo, que um investidor tem o perfil de risco equivalente a 1/3. Isso 

quer dizer que o portfólio deste agente deve se localizar em um ponto contido na fronteira 

eficiente tal que sua volatilidade se distancia da volatilidade mínima em 1/3 da diferença de 

entre a abcissa do ponto máximo (𝜎𝑝𝑚𝑎𝑥) e a abcissa do ponto mínimo (𝜎𝑝𝑚𝑖𝑛) da fronteira. 
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Gráfico 10 Seleção de portfólio com base em perfil de risco 

 

Fonte: Elaborado pela autora 

 

(c) No entanto, em aplicações reais, é comum que a disposição do investidor em alocar 

recursos em risco seja melhor representada por uma função que leva em conta a expectativa de 

taxa de retorno e não apenas um nível ou perfil de risco fixos. Isto é, quanto maior a expectativa 

de retorno, maior também é a disposição a risco. Para isso, pode-se utilizar a Função Utilidade 

(Fabozzi, 2007), que determina o nível máximo de risco com base na taxa de retorno esperada. 

Desta forma, a intersecção entre a fronteira eficiente e a Função Utilidade determina o portfólio 

a ser selecionado (vide Gráfico 11).  

Ainda segundo o autor, no caso de os conjuntos de retornos serem aproximados por 

distribuições normais, a intersecção da função utilidade e da fronteira eficiente coincide com o 

limite máximo de risco (𝜎𝑢𝑡𝑚𝑎𝑥). Desta forma, se a hipótese de distribuição normal das taxas 

de retorno das classes de ativos for adotada, o problema se degenera ao caso (a). 
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Gráfico 11 Exemplo de função utilidade 

 

Fonte: Elaborado pela autora 

 

 

2.3.7 Ajustes na alocação dos portfólios 

 

Os métodos descritos anteriormente buscam definir uma alocação ótima de recursos 

entre classes de ativos a ser mantida por um longo período de tempo. No entanto, em aplicações 

reais de gestores com verdadeira perspectiva de longo prazo há necessidade de pequenos ajustes 

das proporções das classes de ativos. Uma das razões é a necessidade de rebalanceamento do 

portfólio. Após determinado período, em geral anualmente, a alocação de classes de ativos que 

obtiveram maior retorno e naturalmente se tornaram maiores no portfólio é reduzida. Já as que 

tiveram pior desempenho têm alocação aumentada. A principal justificativa desta abordagem é 

proveniente da ideia que existe uma reversão à média histórica da taxa de retorno. Isto é, se um 

investimento gerou uma taxa de retorno acima do esperado em relação aos outros componentes 

do portfólio em certo período, seria prudente reduzir a alocação pois haveria uma tendência de 

piora do desempenho no período seguinte. 

Outra razão é a incorporação da perspectiva qualitativa de médio prazo. É comum que 

algumas decisões de alocação, principalmente de classes de ativos líquidas, sejam influenciadas 

por perspectivas de médio prazo. Tais visões incluem aspectos complexos que dificilmente 

seriam abordados de maneira eficiente pelos modelos de longo prazo. Essas decisões, chamadas 

de táticas, são geralmente bastante influenciadas por posicionamentos qualitativos, como as 
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perspectivas macroeconômicas e a perspectiva de geração de alpha em determinada classe de 

ativos. 

Desta forma, em aplicações reais é interessante considerar não apenas uma alocação 

ótima, mas um intervalo otimizado de distribuição de recursos, dentro do qual há certa 

mobilidade para absorver as necessidades supracitadas. 

 

2.4 MODELOS DE COMPOSIÇÃO DE PORTFÓLIO 

 

Na seção anterior adotou-se a fronteira eficiente para representação do risco de um 

investimento. No entanto, ainda não foram abordados métodos para o cálculo dos portfólios 

que a compõe. Assim, esta seção trata de diferentes ferramentas de otimização para a 

identificação de alocações ótimas. 

Segundo Costa e Paiva (2002), as abordagens mais comuns são (i) a minimização do 

estimador de risco dado um limite mínimo de taxa de retorno e (ii) a maximização da taxa de 

retorno dado um limite máximo de estimador de risco. 

(i) min
𝒘∈𝑊

𝑢 (𝒘) 

𝑠. 𝑎.  𝒘′𝒓 ≥ 𝑟𝑡𝑚𝑖𝑛 

 (ii) max 
𝒘∈𝑊

 𝒘′𝒓 

𝑠. 𝑎.  𝑢(𝒘) ≥ 𝑟𝑘𝑚𝑎𝑥 

Onde, 

- 𝒘 e 𝒓 foram definidos anteriormente nas subseções 2.2.3 e 2.2.1 respectivamente; 

- 𝑊 determina as restrições lineares de alocação nas classes de ativos; 

- 𝑢(𝒘) é uma medida de risco de um portfólio 𝒘; 

- 𝑟𝑡𝑚𝑖𝑛 é o retorno mínimo esperado para o portfólio; 

- 𝑟𝑘𝑚𝑎𝑥 é o valor máximo esperado para a medida de risco 𝑢(𝒘). 

Considerando estas duas abordagens associadas a diferentes medidas de risco recaímos 

em diferentes modelos de otimização de alocação. Nas subseções seguintes três destes modelos 

são tratados, a saber: o modelo clássico de Markowitz, o modelo de minimização do Valor em 

Risco Condicional e o modelo de maximização do retorno proposto por Fabozzi (2007) (vide 

Tabela 1). 
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Tabela 1 Modelos de otimização de portfólio abordados neste texto 

 Métrica de risco: 

Método de minimização: 
Variância ou Desvio 

Padrão 
CVar 

(i) a minimização do estimador de 

risco dado um limite mínimo de 

taxa de retorno 

Modelo Clássico de 

Markowitz 

Minimização do 

valor em risco 

condicional 

(ii) a maximização da taxa de 

retorno dado um limite máximo de 

estimador de risco 

Modelo de Fabozzi 

(2007) 
 

Fonte: Elaborado pela autora 

 

2.4.1 Minimização da variância 

 

O modelo clássico de Markowitz (1952) busca minimiza o risco, que é mensurado 

através da variância do portfólio, para um dado um limite mínimo de taxa de retorno, conforme 

representação  a seguir. 

min
𝒘∈𝑊

𝜎2(𝒘) = 𝒘′𝝈𝒘 

𝑠. 𝑎.  𝒘′𝒓 ≥ 𝑟𝑡𝑚𝑖𝑛 

Em que, 

- 𝜎2(𝒘) foi definido na subseção 2.2.4. 

 

2.4.2 Minimização do Valor Condicional em Risco 

 

A abordagem utilizando o Valor Condicional em Risco busca minimizar o risco, que é 

medido através de Cvar, para um dado nível de confiança e um limite mínimo de taxa de retorno 

esperado para o portfólio, conforme representação a seguir. 

min
𝒘∈𝑊

𝐶𝑣𝑎𝑟𝛽(𝒘) =
1

𝛽
∫ 𝑓(𝒘, 𝑟)𝑔(𝑟)𝑑𝑟

 

𝑓(𝒘,𝑟)≤𝑝(𝒘,𝛽)

 

𝑠. 𝑎.  𝒘′𝒓 ≥ 𝑟𝑡𝑚𝑖𝑛 

Em que, 

- 𝐶𝑣𝑎𝑟𝛽(𝒘) foi definido na subseção 2.2.4. 
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2.4.3 Maximização da taxa de retorno 

 

O modelo de Fabozzi (2007) procura maximizar a taxa retorno limitando a variabilidade, 

medida através do desvio padrão resultante do portfólio. Está métrica não distingue incerteza 

em relação às expectativas de taxas de retorno do risco associado a cada classe de ativos. A 

representação desta abordagem é descrita a seguir. 

max
𝒘∈𝑊

𝑟𝑝 (𝒘) = 𝒘′𝒓 

𝑠. 𝑎.  √(𝒓𝒅𝒆𝒓𝒊 − 𝑟𝑡𝑚𝑖𝑛)′𝝈
−1(𝒓𝒅𝒆𝒓𝒊 − 𝑟𝑡𝑚𝑖𝑛) ≤ 𝑘  𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑜 𝑖 

Onde, 

- 𝑘 é um parâmetro de limitação da variabilidade; 

- 𝒓𝒅𝒆𝒓𝒊𝜖 ℝ
𝑁 é um elemento do retorno amostral; 

- 𝝈−1 é a matriz inversa de 𝝈 . 

 

2.4.4 Incerteza nos parâmetros 

 

Os modelos abordados baseiam-se em parâmetros de expectativa de risco, retorno e 

correlação das diferentes classes de ativos. No entanto, as estimativas destes parâmetros 

frequentemente estão associadas a incertezas relevantes, uma vez que são projeções do 

comportamento de grupos de ativos em longos intervalos de tempo. 

Estas incertezas tornam-se mais relevantes dependendo da sensibilidade do modelo às 

variações dos parâmetros. Considere, por exemplo, duas simulações cuja única diferença é uma 

pequena variação nos parâmetros de entrada contida no intervalo de incerteza. Se o portfólio 

gerado por uma das simulações for considerado significativamente ineficiente frente aos 

parâmetros da outra simulação, então o modelo é bastante sensível a incerteza. Esta 

característica prejudica sua aplicação em casos reais, uma vez que o portfólio apontado como 

ótimo pode gerar um desempenho bastante fraco dependendo do desvio do comportamento das 

classes de ativos em relação às estimativas iniciais. 

O modelo tradicional de Markowitz pode ser considerado bastante sensível aos 

parâmetros de entrada. Para ilustrar tal dependência foram executadas diferentes simulações, 

cada uma com parâmetros de entrada distintos e contidos nas estimativas de incerteza. Dessa 

forma, cada uma destas simulações gerou um conjunto de portfólios considerados ótimos pelo 

modelo de Markowitz. Verificou-se, então, o desempenho de cada um destes portfólios em um 
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mesmo cenário, cujos parâmetros correspondem às estimativas iniciais. Por fim, estes 

resultados foram dispostos no Gráfico 12 juntamente com a fronteira eficiente obtida com os 

parâmetros estimados. Pode-se observar que há portfólios significativamente ineficientes 

resultantes de pequenos desvios na estimativa dos parâmetros. 

 

Gráfico 12 Desempenho de portfólios considerados ótimos pelo modelo de Markowitz clássico para 

pequenas variações nos parâmetros de entrada. Os portfólios considerados representam portfólios 

eficientes de Markowitz para pequenas diferenças nos parâmetros de entrada 

 

Fonte: Elaborado pela autora 

 

Desta forma, fica evidente a necessidade de consideração de incerteza nos parâmetros 

de entrada dos modelos. O capítulo seguinte aborda algumas alternativas que consideram este 

desvio. 

  

Ta
xa

 d
e 

R
et

o
rn

o
 E

sp
er

ad
a

Volatilidade

Sensibilidade do modelo de Markowitz a variações dos 
parâmetros de entrada

Nuvem MK ClássicoFronteira EficientePortfólios considerados



50 

 

  



51 

 

3 OS MODELOS DE INTERESSE 

 

Estabelecida a fundamentação teórica, pode-se estudar diferentes modelos propostos na 

literatura para a solução do problema de otimização de alocação de recursos. A fim de analisa-

los, faz-se para cada um uma breve descrição, o detalhamento das hipóteses e a indicação de 

técnicas de resolução. 

 

3.1 O MODELO DE MARKOWITZ 

 

O primeiro modelo considerado é o clássico de Markowitz em que, procura-se 

identificar o portfólio que minimiza o risco, que é medido pela variância, respeitando um limite 

mínimo de taxa de retorno. Segue a formulação, conforme já descrito na subseção 2.4.1. 

min
𝒘∈𝑊

𝜎2(𝒘) = 𝒘′𝝈𝒘 

𝑠. 𝑎.  𝒘′𝒓 ≥ 𝑟𝑡𝑚𝑖𝑛 

O modelo supõe expectativa de taxas de retorno determinística para cada classe de 

ativos. Como visto anteriormente, há sensibilidade significativa a pequenas variações deste 

parâmetro, de forma que a aplicação em casos em que há incerteza pode ser bastante ineficiente. 

Outra hipótese adotada pelo modelo é que a taxa de retorno resultante do portfólio pode 

ser adequadamente representada por uma distribuição normal multivariada, o que gera 

basicamente duas implicações. (i) Uma delas é que as classes de ativos individualmente também 

têm distribuição normal de probabilidade das taxas de retorno, de forma que a curva é simétrica 

e a variância é suficiente para descrever e comparar o risco entre as possíveis alocações. (ii) A 

outra implicação é considerar que a correlação entre os conjuntos de taxa de retorno das classes 

de ativos é linear e constante, de forma que basta o coeficiente de correlação linear para 

descrever a relação entre elas. 

Para a resolução do modelo, pode-se observar que a função objetivo é quadrática e as 

restrições são lineares. Dessa forma, uma alternativa é a utilização de programação linear 

quadrática. Para garantir que a solução do problema com este método seja de fato o mínimo 

global, pode-se verificar que a função objetivo é convexa (vide Apêndice B.2) e que as 

condições de KKT se aplicam (vide Apêndice B.3). 

Há, ainda uma alternativa de resolução para o caso particular de haver apenas restrições 

lineares de igualdade. Neste caso, a utilização de multiplicadores de Lagrange transforma o 
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problema em um sistema de equações lineares, o que diminui a demanda por capacidade 

computacional para os cálculos. Tal resolução é descrita no Apêndice B.6. 

Para o cálculo da solução foi desenvolvido um modelo de simulação que utiliza a função 

qpsolve do software Scilab (vide código no Apêndice A). 

 

3.2 O MODELO DE MICHAUD 

 

Segundo Fabozzi (2007), a resolução do modelo de Markowitz se assimila a simulações 

caóticas, em que pequenas variações nos parâmetros de entrada resultam em grandes variações 

em seus resultados. Considerando a premissa de parâmetros determinísticos para cada 

componente do portfólio, tem-se que pequenos erros nas estimativas de taxa de retorno podem 

resultar em alocações significativamente menos eficientes (conforme já observado no Gráfico 

12). Desta forma, diversos autores apresentaram alternativas para redução da sensibilidade do 

modelo a variações pequenas nos parâmetros de entrada. 

Uma das possibilidades é a utilização do conceito de processos estocásticos, o qual 

utiliza variáveis aleatórias que evoluem com um fenômeno ou um sistema ao longo do tempo 

(Marchetti, 2010). A ideia do modelo é considerar não apenas um vetor de taxas de retorno, 

mas um conjunto deles que seja representativo da incerteza das estimativas. Para cada um destes 

vetores é calculada uma fronteira eficiente através do modelo clássico de Markowitz. Por fim, 

os portfólios de todas as fronteiras eficientes são agrupados convenientemente com o objetivo 

de gerar sugestões de alocação para cada nível de risco. 

Apesar de o modelo considerar diferentes cenários, algumas das hipóteses de Markowitz 

continuam sendo adotadas. A distribuição de probabilidade das taxas de retorno continua sendo 

considerada normal, apesar da possibilidade de mudança nos parâmetros de média e desvio-

padrão entre simulações de fronteiras diferentes. Analogamente, a correlação entre as classes 

de ativos continua sendo considerada linear, mas não mais constante, tendo em vista a 

possibilidade de variação da matriz de correlação entre os diferentes cenários. 

Definidas as principais hipóteses adotadas, parte-se para o detalhamento do modelo e 

de técnicas de resolução. Neste caso, as variáveis aleatórias do processo estocástico considerado 

são os vetores de taxas de retorno das classes de ativos (𝒓𝒅𝒆𝒓
(𝒊)

), que formam o conjunto a seguir. 

𝑋 = {𝒓𝒅𝒆𝒓
(𝟏)  , 𝒓𝒅𝒆𝒓

(𝟐) , … , 𝒓𝒅𝒆𝒓
(𝒎)} 

Em que, 
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- 𝑋 é o conjunto de vetores de taxa de retorno das classes de ativos que constituem as 

variáveis aleatórias do processo estocástico; 

- 𝑚 é o número de observações realizadas; 

- 𝒓𝒅𝒆𝒓
(𝒊)
𝜖ℝ𝑁 é o i-ésimo elemento do conjunto de taxas de retorno 𝑋. 

Para cada um dos vetores que compõem o conjunto (𝑋) das variáveis aleatórias, é 

calculada uma fronteira eficiente através do modelo clássico de Markowitz. Desta forma, se 

obtém um conjunto de fronteiras eficientes, que são resultantes do fenômeno estocástico (vide 

Figura 2). 

 

Figura 2 Algoritmo de simulação estocástica 

 

Fonte: Elaborado pela autora 

 

Este conjunto de portfólios de diferentes fronteiras pode ser, então, agrupado 

convenientemente, para que se gere uma sugestão de alocação dependendo da suscetibilidade 

do investidor a risco. Há diferentes critérios para se realizar este agrupamento, desde que se 

respeite a propriedade de que todos os portfólios dentro de um grupo possuam a mesma 

probabilidade de ocorrência. Como o conjunto das fronteiras foi gerado aleatoriamente através 

de processo estocástico, basta que cada grupo selecione exatamente um portfólio de cada 

fronteira eficiente. Neste texto são abordadas duas possibilidades, a saber: o perfil de risco (a) 

e o nível de risco (b). 

(a) O critério de agrupamento utilizado por Michaud (1998) considera o perfil de risco 

do investidor (vide subseção 2.3.6). Isto é, o nível de risco máximo ao qual o investidor se 

submete não é fixo para todas as fronteiras eficientes geradas, mas depende do intervalo de 

volatilidade em que cada fronteira está contida. Dessa forma, são formados grupos com pontos 

que possuem as mesmas características de perfil de risco (vide Gráfico 13).  
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Para que dois portfólios de fronteiras eficientes diferentes (𝐴 e 𝐵) sejam agrupados no 

mesmo perfil de risco, deve-se satisfazer que 

𝑃𝑅 =
𝜎𝑝
∗
 

(𝐴) − 𝜎𝑝𝑚𝑖𝑛
(𝐴)

𝜎𝑝𝑚𝑎𝑥
(𝐴) − 𝜎𝑝𝑚𝑖𝑛

(𝐴)
=

𝜎𝑝
∗
 

(𝐵) − 𝜎𝑝𝑚𝑖𝑛
(𝐵)

𝜎𝑝𝑚𝑎𝑥
(𝐵) − 𝜎𝑝𝑚𝑖𝑛

(𝐵)
  

Onde, 

- 𝐴 e 𝐵 indicam duas fronteiras eficientes distintas; 

- 𝜎𝑝
∗
 

(∙)
 é a volatilidade de um ponto da fronteira eficiente (∙) que apresenta o perfil de 

risco 𝑃𝑅; 

- 𝜎𝑝𝑚𝑎𝑥
(∙) é a volatilidade do ponto de maior taxa de retorno da fronteira eficiente (∙); 

- 𝜎𝑝𝑚𝑖𝑛
(∙) é a volatilidade do ponto de menor taxa de retorno da fronteira eficiente (∙). 

 

Gráfico 13 Perfil de risco do investidor 

 

Fonte: Elaborado pela autora 

 

(b) Outra possibilidade de agrupamento é através do nível de risco (vide subseção 2.3.6). 

A ideia é agrupar os portfólios definidos pela intersecção de cada uma das fronteiras eficientes 

com a vertical do nível de risco máximo pretendido pelo investidor (𝜎𝑢𝑡𝑚𝑎𝑥) no plano retorno-

risco (vide Gráfico 14). 
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Note, no entanto, que nem todas as fronteiras eficientes contêm portfólios ótimos para 

todos os níveis de risco, como é o caso exemplificado pela fronteira B do Gráfico 14. Para 

contornar este problema, optou-se pela seleção do ponto de maior nível de risco possível, ainda 

que ele seja inferior ao pretendido pelo investidor. 

 

Gráfico 14 Agrupamento por nível de risco. Note que o ponto de máximo retorno da fronteira é utilizado 

no agrupamento com nível máximo de risco 𝒖𝒖𝒕. 

 

Fonte: Elaborado pela autora 

 

Essa abordagem parece fazer sentido empiricamente. Considere, por exemplo, um 

cenário hipotético em que investimentos de maior risco apresentam uma perspectiva de 

desempenho pior, de forma que o nível de risco máximo pretendido pelo investidor (𝜎𝑢𝑡𝑚𝑎𝑥
 ) 

não pode ser otimamente alcançado. Isso não necessariamente significa que as outras classes 

de ativos estão com pior desempenho. No entanto, se fosse aplicada a lógica de perfil de risco, 

a volatilidade de seu portfólio deveria ser diminuída proporcionalmente. O que pode implicar 

em uma redução expressiva do risco do portfólio, com uma resposta mais intensa do que seria 

necessário tendo em vista do cenário considerado. Já se fosse aplicada a lógica de nível de risco, 

seria selecionado o ponto da fronteira eficiente de maior volatilidade possível (𝜎𝑝𝑚𝑎𝑥), sendo 

mantida a eficiência com o nível de risco mais próximo possível do pretendido pelo investidor. 

Determinados os grupos a serem considerados é possível estabelecer as sugestões de 

alocação para cada perfil ou nível de risco. Para isso, define-se o portfólio médio de cada 
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agrupamento como a média da alocação dos integrantes do grupo em cada classe de ativos, 

conforme formulação seguinte. 

𝒘̅ 
(𝑮) =

1

𝑚
∑𝒘𝒊

(𝑮)

𝒎

𝒊=𝟏

 𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑜 𝐺 

Onde, 

- 𝐺 é um dos agrupamentos de portfólios utilizando os critérios de nível ou perfil de 

risco; 

- 𝒘̅ 
(𝑮)𝜖ℝ𝑁 são as proporções de alocação do portfólio médio do grupo 𝐺 em cada classe 

de ativos; 

- 𝒘𝒊
(𝑮)𝜖ℝ𝑁 são as proporções da alocação do i-ésimo portfólio pertencente grupo 𝐺; 

- 𝑚 é o número de portfólios contidos no grupo 𝐺, que coincide com o número de 

observações do processo estocástico. 

Com estes desenvolvimentos já é possível obter uma fronteira formada pelos portfólios 

médios. No entanto, Michaud (1998) propõe a consideração de mais um passo, que é a filtragem 

das alocações consideradas extremas. Esta filtragem faz sentido empiricamente, uma vez que, 

mesmo em condições mais adversas de mercado é raro que em investimentos de longo prazo 

haja flexibilidade para mudanças muito grandes de alocação entre as classes de ativos de um 

portfólio. 

Para isso, foi definida de uma métrica de distância de um portfólio em relação a outro, 

como mostrado na formulação a seguir. 

𝑐(𝜃, 𝜂) = (𝒘𝜃 −𝒘𝜼)
′
𝝈(𝒘𝜃 −𝒘𝜼). 

Onde, 

- 𝜃 e 𝜂 são dois portfólios quaisquer pertencentes ao mesmo grupo; 

- 𝑐(𝜃, 𝜂)𝜖ℝ é a distância entre os portfólios  𝜃 e 𝜂; 

- 𝒘(∙) é a alocação do portfólio (∙); 

- 𝝈𝜖ℝ𝑁 × ℝ𝑁 é a matriz de covariância entre as classes de ativos. 

Essa métrica é, então, utilizada para medir a distância dos portfólios de um grupo em 

relação ao portfólio médio deste grupo. Desta forma, os portfólios mais distantes do médio são 

excluídos do agrupamento e os novos portfólios médios são calculados a partir dos elementos 

restantes. 
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3.3 MODELO DE OTIMIZAÇÃO ROBUSTA 

 

Assim como na abordagem da seção anterior, os modelos de otimização robusta também 

procuram reduzir a sensibilidade dos resultados a pequenas variações nos parâmetros de entrada 

das simulações. No entanto, ao invés da utilização do conceito de processos estocásticos, 

emprega-se a otimização robusta, isto é, desenvolvem-se modelos suficientemente imunes às 

incertezas nos dados (Alem e Morabito, 2015). 

A abordagem robusta descrita por Costa e Paiva (2000) pretende selecionar portfólios 

que minimizem o máximo risco considerando todos os elementos de uma amostra e garantindo 

retorno mínimo do portfólio sob incerteza. Para isso o modelo considera variabilidade nas taxas 

de retorno e as matrizes de covariância. Diferentemente do modelo descrito na seção anterior, 

que adota a média das alocações eficientes, neste caso o risco do pior caso é minimizado. 

Esta abordagem de otimização robusta também tem como base o trabalho de Markowitz, 

o que implica na adoção de hipóteses similares. Desta forma, a distribuição de probabilidade de 

taxa de retorno resultante de um portfólio continua sendo suposta normal multivariada, apesar 

de serem considerados diferentes parâmetros de acordo com a variação dos cenários. 

Definidas as principais hipóteses, parte-se para o detalhamento do modelo e de técnicas 

de resolução. Neste caso, a variabilidade é representada através de dois conjuntos: um de 

vetores de taxa de retornos das classes de ativos e outro de matrizes de covariância. 

𝑅𝑖𝑛𝑖 = {𝒓𝟏, 𝒓𝟐, … , 𝒓𝒎} 𝐷𝑖𝑛𝑖 = {𝝈𝟏, 𝝈𝟐, … , 𝝈𝒏} 

 

Onde, 

- 𝑅𝑖𝑛𝑖 é o conjunto de taxas de retorno das classes de ativos inicialmente considerado; 

- 𝐷𝑖𝑛𝑖 é o conjunto de matrizes de covariância inicialmente considerado; 

- 𝑚 é o número de elementos de 𝑅𝑖𝑛𝑖; 

- 𝑛 é o número de elementos de 𝐷𝑖𝑛𝑖; 

- 𝒓𝒊 𝜖 ℝ
𝑁 é o i-ésimo elemento de 𝑅𝑖𝑛𝑖; 

- 𝝈𝒊 𝜖 ℝ
𝑁 × ℝ𝑁 é o i-ésimo elemento de 𝐷𝑖𝑛𝑖. 

Os elementos da amostra são, então, definidos pela combinação linear dos elementos de 

dos conjuntos iniciais, conforme formulação seguinte. 

𝑅𝑑𝑒𝑟 = {𝒓𝒅𝒆𝒓|𝒓𝒅𝒆𝒓 = ∑ 𝜆𝑖𝒓𝒊
𝑚
𝑖=1 } 𝐷𝑑𝑒𝑟 = {𝝈𝒅𝒆𝒓|𝝈𝒅𝒆𝒓 = ∑ 𝛾𝑖𝝈𝒊

𝑛
𝑖=1 } 

Onde, 

- 𝑅𝑑𝑒𝑟 é o conjunto de elementos da amostra de taxa de retorno das classes de ativos; 
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- 𝒓𝒅𝒆𝒓 𝜖 ℝ
𝑁 é um elemento do conjunto 𝑅𝑑𝑒𝑟; 

- 𝜆𝑖 𝜖 ℝ e 𝛾𝑖𝜖 ℝ são valores quaisquer que representam os coeficientes para a 

combinação linear dos vetores de taxa de retorno inicialmente considerados; 

- 𝐷𝑑𝑒𝑟 é o conjunto de elementos da amostra de matrizes de covariância; 

- 𝝈𝒅𝒆𝒓 𝜖 ℝ
𝑁 × ℝ𝑁 é um elemento do conjunto 𝐷𝑑𝑒𝑟. 

Formado os conjuntos, os autores propõem o seguinte modelo para a representação do 

problema de otimização robusta. 

min
𝒘∈𝑊,𝛼

𝛼 

𝒘′𝝈(𝒋)𝒘 ≤ 𝛼  𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑜 𝝈(𝒋) 𝜖 𝐷𝑑𝑒𝑟 

𝒘′ 𝒓𝒅𝒆𝒓
(𝒊) + 𝑟𝑓(1 − [1 … 1]𝒘) ≥ 𝑟𝑡𝑚𝑖𝑛  𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑜 𝒓𝒅𝒆𝒓

(𝒊)  𝜖 𝑅𝑑𝑒𝑟 

Onde, 

- 𝛼𝜖 ℝ  é a máxima variância dentre todos os cenários de retorno e covariância 

considerados; 

- 𝒓𝒅𝒆𝒓
(𝒊) 𝜖 ℝ𝑁 é o i-ésimo elemento da amostra de vetores de taxa de retorno (𝑅𝑑𝑒𝑟); 

- 𝝈(𝒋) 𝜖 ℝ𝑁 × ℝ𝑁 é i j-ésimo elemento da amostra de matrizes de covariância (𝐷𝑑𝑒𝑟); 

- 𝑟𝑓𝜖 ℝ
  é o retorno atribuído ao investimento considerado, no limite, livre de risco. 

A primeira restrição (𝒘′𝝈(𝒋)𝒘 ≤ 𝛼) resulta em uma inequação convexa não-linear. Uma 

maneira de contornar esta questão é utilizando a linearização através do complemento de Schur 

(vide Apêndice B.5). Dessa forma, a solução do problema passa pela resolução de uma 

otimização com desigualdade matricial linear (da sigla em língua inglesa LMI). 

min
𝒘∈𝑊,𝛼

𝛼 

[ 𝛼 𝒘′𝝈(𝒋)

𝝈(𝒋)𝒘 𝝈(𝒋)
] ≥ 0  𝑝𝑎𝑟𝑎 𝑗 = 1,2, … , 𝑛 

𝒘′ 𝒓𝒅𝒆𝒓
(𝒊) + 𝑟𝑓(1 − [1 … 1]𝒘) ≥ 𝑟𝑡𝑚𝑖𝑛  𝑝𝑎𝑟𝑎 𝑖 = 1,2, … ,𝑚 

A resolução deste problema de otimização linear gera uma sugestão de alocação dada 

uma taxa de retorno mínima esperada para o portfólio. Para isso foi utilizada a função lmisolver 

do software Scilab (vide código no Apêndice A). 

 

3.4 O MODELO DE ROCKAFELLAR E URYASEV 

 

O modelo de Rockafellar e Uryasev (2000) difere dos abordados anteriormente por 

considerar o Valor em Risco Condicional do portfólio como métrica de risco e não mais a 
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variância. O objetivo é identificar portfólios que resultam no menor CVar possível, para uma 

taxa de retorno mínima e um nível de confiança. Para isso, a variabilidade é considerada através 

de uma amostra de taxas de retorno das diferentes classes de ativos. Desta forma, a formulação 

do modelo é a seguinte (conforme já visto na subseção 2.4.2). 

min
𝒘∈𝑊

𝐶𝑣𝑎𝑟(𝒘) =
1

𝛽
∫ 𝑓(𝒘, 𝑟)𝑔(𝑟)𝑑𝑟

 

𝑓(𝒘,𝑟)≤𝑝(𝒘,𝛽)

 

𝑠. 𝑎.  𝒘′𝒓 ≥ 𝑟𝑡𝑚𝑖𝑛 

Neste caso, não é necessário que as distribuições de probabilidade das taxas de retorno 

sejam normais, nem mesmo simétricas, uma vez que as próprias amostras são utilizadas para 

descrever a população. A correlação também não é suposta linear, mas é subentendida através 

dos elementos das amostras. Desta forma, uma das principais hipóteses do modelo, é a 

representatividade da amostra considerada, da qual serão extraídos implicitamente os 

parâmetros de resolução. 

Consideradas estas premissas, Rockafellar e Uryasev (2000) sugeriram uma resolução 

para o problema de minimização de CVar (vide subseção 2.2.4). Primeiramente os autores 

notaram que a minimização de 

𝐶𝑉𝑎𝑟𝛽(𝒘) =
1

𝛽
∫ 𝑓(𝒘, 𝑟𝑝)𝑔(𝑟𝑝)𝑑𝑟𝑝

 

𝑓(𝒘,𝑟𝑝)≤𝑝(𝒘,𝛽)

 

é análoga à minimização da expressão 

𝐹𝛽(𝒘, 𝑝) = 𝑝 +
1

𝛽
∫ (𝑓(𝒘, 𝑟𝑝) − 𝑝)𝑔(𝑟𝑝)𝑑𝑟𝑝

 

𝑓(𝒘,𝑟𝑝)≤𝑝(𝒘,𝛽)

. 

Em que, conforme já descrito na seção 2.2.4, 

- 𝑟𝑝 é a taxa de retorno resultante do portfólio; 

- 𝑔(𝑟𝑝) é a distribuição de probabilidade de taxas de retorno de um dado portfólio 𝒘; 

- 𝑓(𝒘, 𝑟𝑝) é a distribuição de probabilidade de taxas de retorno em função da alocação; 

- 𝛽 é o complementar do nível de confiança, representando a probabilidade de taxa de 

retorno menor que a perda máxima; 

- 𝐶𝑉𝑎𝑟𝛽(𝒘) é CVar para um dado 𝛽 e um portfólio com alocações 𝒘. 

Posteriormente foi considerada a representação da forma discretizada da expressão 

𝐹𝛽(𝒘, 𝑝), da seguinte maneira. 

𝐹𝛽(𝒘, 𝑝) = 𝑝 +
1

𝐽𝛽
∑[𝑓(𝒘, 𝑟) − 𝑝]+
𝐽

𝑖=1

. 
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Onde, 

-[𝑡]+ = {
0 𝑠𝑒 𝑡 ≤ 0
𝑡 𝑠𝑒 𝑡 > 0

; 

- 𝐽 é o número de elementos da amostra resultante da discretização da distribuição de 

probabilidade. 

Pode-se, ainda, transformar o problema em um caso de programação linear substituindo 

(𝑓(𝒘, 𝑟) − 𝑝)+ por 𝑧𝑖 e adicionando as seguintes restrições. 

−𝑧𝑖 +𝒘
′𝒓 − 𝑝 ≤ 0 

𝑧𝑖 ≥ 0 𝑝𝑎𝑟𝑎 𝑖 = 1,2, … , 𝐽 

Por fim, o resultado é a solução do seguinte problema de programação linear. 

min
𝒘∈𝑊,𝑝

𝑝 +
1

𝐽𝛽
∑𝑧𝑖

𝐽

𝑖=1

 

𝑠. 𝑎.  − 𝑧𝑖 +𝒘
′𝒓 − 𝑝 ≤ 0 

𝑧𝑖 ≥ 0 𝑝𝑎𝑟𝑎 𝑖 = 1,2, … , 𝐽 

𝒘′𝒓 ≥ 𝑟𝑡𝑚𝑖𝑛 

Portanto, através de uma amostra de vetores de taxas de retornos das classes de ativos é 

possível identificar uma alocação que minimiza CVar do portfólio para o nível de confiança 𝛽 

e uma taxa de retorno maior ou igual a 𝑟𝑡𝑚𝑖𝑛. Isso foi feito utilizando a função karmarkar do 

software de simulação Scilab (vide código no Apêndice A). 

 

3.5 MODELO DE MAXIMIZAÇÃO DE RETORNO 

 

O modelo de maximização de retorno descrito por Fabozzi (2007) busca maximizar a 

taxa de retorno de um portfólio dado um limite máximo de variabilidade, medida através do 

desvio-padrão resultante da alocação. Esta abordagem difere das anteriores uma vez que o 

retorno não é considerado uma restrição, mas o objetivo da otimização. Segue o modelo 

conforme descrito na subseção 2.4.3. 

max
𝒘∈𝑊

𝑟𝑝 (𝒘) = 𝒘′𝒓 

𝑠. 𝑎.  √(𝒓𝒅𝒆𝒓𝒊 − 𝑟𝑡𝑚𝑖𝑛)′𝝈
−1(𝒓𝒅𝒆𝒓𝒊 − 𝑟𝑡𝑚𝑖𝑛) ≤ 𝑘  𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑜 𝑖 

Onde, 

- 𝑘 é um parâmetro de limitação da variabilidade; 

- 𝒓𝒅𝒆𝒓𝒊𝜖 ℝ
𝑁 é um elemento do retorno amostral; 
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- 𝝈−1 é a matriz inversa de 𝝈 . 

Para esta abordagem, considera-se que a expectativa de taxa de retorno para cada classe 

de ativos é determinística. O modelo também adota hipóteses de correlação linear constante 

entre as classes de ativos e distribuições de probabilidade normal de taxas de retorno. 

O modelo sugerido por Fabozzi (2007) pode ser resolvido utilizando um artifício através 

de dualidade. O primeiro passo envolve a solução do problema original, considerando as 

alocações do portfólio como fixas e os retornos de cada classe de ativos como variáveis. 

min
𝒓𝒅𝒆𝒓

𝒘′𝒓𝒅𝒆𝒓 

‖𝝈 
−0.5 (𝒓𝒅𝒆𝒓 − 𝒓)‖  ≤ 𝑘 

Onde, 

- 𝑘 é um parâmetro de limitação da variabilidade; 

- ‖𝝈 
−0.5 (𝒓𝒅𝒆𝒓 − 𝒓)‖ equivale a  √(𝒓𝒅𝒆𝒓 − 𝒓)′𝝈 −1 (𝒓𝒅𝒆𝒓 − 𝒓) segundo o autor. 

Posteriormente, sugere-se utilizar o problema dual para a otimização sem incerteza nos 

parâmetros. Como a formulação anterior é um cone de segunda ordem (SOCP) (Reis, 2013), 

obtém-se o seguinte dual. 

max
𝒖,𝒓𝒅𝒆𝒓

 −(−𝒖′𝝈 
−0.5𝒓) − 𝑘𝑣 

𝝈 
−0.5𝒖 + 0. 𝑣 = 𝒘 

‖𝒖‖ ≤ 𝑣 

Onde, 

- 𝑢𝜖ℝ𝑁 e 𝑣𝜖ℝ  são parâmetros do problema dual. 

Se 𝒖 = 𝝈 
−0.5𝒘 então o problema pode ser escrito da seguinte forma. 

max
𝑣
 𝒘′𝒓 − 𝑘𝑣 

‖𝝈 
−0.5𝒘‖ ≤ 𝑣 

Segundo a dualidade, a otimização deste problema seria análoga à otimização do 

problema original, de tal forma que o menor retorno seria dado pela seguinte expressão. 

𝒘′𝒓 − 𝑘𝑣 ≥ 𝒘′𝒓 − 𝑘‖𝝈 
−0.5𝒘‖ = 𝒘′𝒓 − 𝑘√𝒘′𝝈𝒘 

Note que esta expressão não depende do conjunto de retornos sujeitos a aleatoriedade. 

Basta, então, substituir a função objetivo do problema inicial. 

max
𝒘∈𝑊

 𝒘′𝒓 − 𝑘√𝒘′𝝈𝒘 

Obteve-se, assim, uma formulação similar ao modelo de Markowitz, com, no entanto, 

uma penalização para desvio-padrão, seja ele associado ao risco ou à incerteza dos parâmetros 
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de taxa de retorno. O cálculo foi feito utilizando a função optim do software de simulação Scilab 

(vide código no Apêndice A). 

 

3.6 A ABORDAGEM UTILIZADA 

 

Conforme brevemente citado nas seções anteriores, a resolução de cada um dos modelos 

envolve hipóteses sobre o comportamento dos três principais parâmetros: métricas de risco, 

retorno e correlação. Desta forma, esta seção se dedica a expor as implicações destas premissas 

nos resultados obtidos por cada uma das abordagens. O Figura 3 e a Tabela 2 resumem essa 

discussão. 

 

Figura 3 Hipóteses adotadas na resolução dos modelos 

 

Fonte: Elaborado pela autora 
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Tabela 2 Hipóteses consideradas pelas diferentes abordagens 

 Correlação Risco Retorno 

Markowitz  Linear Variância constante 
Determinístico com 

distribuição simétrica 

Michaud 
Linear com diferentes 

cenários 
Incerteza na variância 

Estocástico com 

distribuição simétrica 

Otimização 

robusta 

Linear com diferentes 

cenários 
Incerteza na variância 

Diferentes cenários com 

distribuição simétrica 

Rockafellar e 

Uryasev 
Implícita CVar do portfólio 

Pode ter distribuição 

assimétrica 

Maximização 

do retorno 
Linear Desvio-padrão constante 

Determinístico com 

distribuição simétrica 
Fonte: Elaborado pela autora 

 

3.6.1 A abordagem em relação ao retorno 

 

Primeiramente é considerada a expectativa de taxa de retorno de longo prazo para cada 

uma das classes de ativos. Tanto no modelo clássico de Markowitz quanto no modelo de 

maximização do retorno, é suposto que este parâmetro é determinístico. Desta forma, em ambos 

os casos, é possível que pequenos erros nas estimativas possam resultar em sugestões de 

alocação bastante ineficientes. 

Neste texto foram abordadas duas alternativas para a consideração de variabilidade deste 

parâmetro no modelo clássico de Markowitz: uma delas através de processos estocásticos, no 

modelo de Michaud (1998), e a outra através de otimização robusta, no modelo de Costa e Paiva 

(2000). Em ambos os casos é necessária a consideração de um conjunto de vetores de retorno 

como parâmetros de variabilidade da simulação. Em um deles, estes vetores compõem o 

conjunto de variáveis aleatórias do processo estocástico (𝑋); em outro, formam o conjunto 

inicial de taxas de retorno consideradas para a otimização robusta (𝑅𝑖𝑛𝑖) (vide seção 3.2 e 3.3). 

Desta forma, os vetores são necessários para a incorporação de diferentes cenários a serem 

considerados pelos modelos. 

Para a geração do conjunto de vetores a serem usados nas simulações, são, neste texto, 

consideradas duas possibilidades. Uma delas é a utilização de um conjunto de dados históricos, 

de tal forma que os elementos da amostra são as taxas de retorno das classes de ativos 

observadas em determinados intervalos de tempo coincidentes. Outra possibilidade é a 

aplicação de uma simulação de Monte Carlo parametrizada a partir das características 

observadas nas amostras históricas. Neste texto, os parâmetros utilizados na simulação de 

Monte Carlo têm como hipótese a distribuição de probabilidade normal multivariada dos 

conjuntos históricos de retorno (vide Apêndice B.4). 
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Por fim, no caso do modelo de otimização de Rockafellar e Uryasev, também é 

considerada variabilidade das taxas de retorno das classes de ativos. De forma análoga aos 

modelos estocástico e robusto, isto é feito através de conjuntos de vetores que representam 

diferentes cenários. Desta forma, o conjunto destes cenários é utilizado para a construção da 

distribuição de probabilidade de retornos resultantes do portfólio e posterior cálculo de CVar. 

Pode-se também considerar neste caso tanto a utilização de amostras históricas quanto a geração 

de vetores de retorno através de uma simulação de Monte Carlo. 

As soluções aplicadas neste trabalho consideraram a variabilidade nas expectativas de 

retorno através de um conjunto de vetores gerados por uma simulação de Monte Carlo, que 

adotou a hipótese de distribuição normal multivariada (vide Apêndice B.4).  

 

3.6.2 A abordagem em relação à métrica de risco 

 

É considerada agora a métrica adotada pelos modelos para representar o risco das classes 

de ativos e do portfólio resultante das alocações. No caso do modelo clássico de Markowitz, 

utiliza-se a variância da distribuição de probabilidade das taxas de retorno. Esta hipótese 

considera que as distribuições de retorno tanto para classes de ativos quanto para o portfólio 

são normais, de forma que podem ser completamente definidas e comparadas através da média 

e do desvio-padrão. A adoção desta premissa também implica que as distribuições de retorno 

são simétricas, de forma que a limitação da probabilidade de perda torna-se análoga à limitação 

da variância. Desta forma, se o modelo for aplicado a distribuições de retorno que se afastam 

significativamente da hipótese de simetria, pode-se incorrer distorções da métrica de risco, com 

possível penalização equivocada dos desvios acima da média e redução do impacto dos desvios 

abaixo da média. 

A variância como métrica de risco no modelo de Markowitz é considerada 

determinística e constante para intervalos de longo prazo. Desta forma, caso haja incerteza 

considerável na definição dos parâmetros de variância de cada classe de ativos, pode-se obter 

uma alocação bastante ineficiente. 

As hipóteses adotadas pelo modelo de maximização do retorno são análogas às adotadas 

pelo modelo de Markowitz, com a única diferença de que a métrica de risco utilizada é o desvio-

padrão e não a variância. 

Os modelos de Michaud e de otimização robusta também utilizam variância como 

métrica de risco e mantêm a hipótese de normalidade das distribuições de probabilidade das 

taxas de retorno das diferentes classes de ativos. No entanto, para ambas as abordagens é 
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possível considerar incerteza nos parâmetros de risco. Isso é feito de forma análoga ao descrito 

na subseção anterior para o conjunto de vetores de taxas de retorno, considerando, no entanto, 

um conjunto de diferentes cenários de variância, expressos através de diferentes matrizes de 

covariância. 

O modelo de Rockafellar e Uryasev utiliza o Valor em Risco Condicional como métrica 

de risco. Neste caso, as hipóteses são menos rígidas, de forma que dado um conjunto 

representativo de cenários de taxa de retorno, não é necessário que a distribuição de 

probabilidade deles seja normal, podendo ser até mesmo assimétrica. 

As soluções aplicadas neste trabalho consideraram apenas variabilidade nas 

expectativas de retorno para as classes de ativos e não na variância. 

 

3.6.3 A abordagem em relação à correlação entre as classes de ativos 

 

A maneira com que a correlação entre as classes de ativos é considerada difere entre as 

abordagens. Os modelos de Markowitz e de minimização da taxa de retorno consideram a 

correlação linear e determinística. Desta forma, a aplicação deste modelo para classes de ativos 

cuja relação entre as taxas de retorno é incerta ou distante de uma reta pode ser questionada. 

Os modelos de Michaud e de otimização robusta adotam a correlação linear entre as 

classes de ativos, mas preveem variabilidade. Isso é feito através da consideração de diferentes 

cenários expressos através do conjunto de matrizes de covariância. 

Alternativamente, é possível utilizar modelos mais complexos que são capazes de 

descrever um grande leque de outras estruturas de relação. Este é o caso, por exemplo, das 

Funções de Copulas (Embrechts, 2001; Joe (1997); Nelsen (1999)). No entanto, estes conceitos 

não foram aplicados neste trabalho. 

Por fim, no modelo de Rockafellar e Uryasev não é necessária a descrição explícita das 

relações entre as taxas de retorno das classes de ativos. Desta forma, considerando que a 

amostra utilizada é representativa, não se delimitam hipóteses de correlação. 
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4 RESULTADOS OBTIDOS 

 

Neste capítulo são definidos os parâmetros e os métodos de aplicação dos modelos em 

classes de investimentos tipicamente utilizadas no mercado de capitais. Dessa forma, são 

definidos critérios para a amostragem de taxas de retorno históricas e para parâmetros dos 

modelos de otimização. 

A seguir, são aplicados métodos de verificação dos modelos, para garantir que a 

construção foi adequada, e técnicas de validação, para realizar a comparação entre os resultados 

dos modelos (Pace, 2004). 

 

4.1 A DETERMINAÇÃO DOS PARÂMETROS 

 

Nesta seção pretende-se definir os parâmetros a serem utilizados na aplicação dos 

modelos. Desta forma, primeiro são delimitadas as classes de ativos a serem consideradas, 

posteriormente são definidos os parâmetros para coleta de amostra de dados históricos. 

 

4.1.1 A delimitação das classes de ativos consideradas 

 

A partir da aplicação dos critérios de agrupamento de investimentos com 

comportamento similar (vistos anteriormente na subseção 2.3.3), foram consideradas nove 

classes de ativos. A seguir é feita uma breve descrição de cada uma delas. 

Estratégias de baixa duração e com grau de investimento (IGSD) tipicamente funcionam 

como substitutos de caixa e evitam que o recurso fique desinvestido. Dessa forma, é esperado 

que estas alocações sejam bastante líquidas, com baixa duração e com risco e taxa de retorno 

baixos. Podem ser incluídas nessa classe de ativos dívidas de empresas para uso como capital 

de giro e dívidas de curto prazo do governo estadunidense, por exemplo. 

Dívidas de empresas com grau de investimento (IG CORP) compreendem alocações 

que podem ter uma duração maior, porém com um risco de não-pagamento bastante baixo. São 

créditos líquidos, com taxa de retorno limitada, emitidos por companhias consideradas sólidas 

pelo mercado. Tanto nesta classe de ativos quanto na anterior, a dispersão dentro dos grupos 

tende a ser baixa. 

Dívidas de empresas sem grau de investimento (HY CORP) compreendem alocações 

com certa duração e com um risco mais elevado de não-pagamento. Eles são créditos líquidos 

emitidos por companhias cuja solidez é questionada pelo mercado, sendo muitas vezes 
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considerados papéis especulativos. A expectativa de taxa de retorno tende a ser mais elevada 

que no caso de empresas com grau de investimento. 

Retorno absoluto (ABS RET) compreende investimentos que têm uma da taxa de 

retorno bastante descorrelacionada entre si e de outras classes de ativos, isto é, os fatores que 

influenciam seu comportamento tendem a ser específicos e diferentes do restante do mercado 

de capitais. Eles podem incluir, por exemplo, instrumentos financeiros alternativos, alocações 

em setores econômicos específicos e exploração de situações de assimetria de valor. A relação 

de risco-retorno e duração podem variar bastante entre os tipos de investimento dentro desta 

classe de ativos. 

Ações públicas de mercados desenvolvidos (EQ DM) incluem papéis líquidos de 

empresas de capital aberto cujas sedes estão em países desenvolvidos. As expectativas de taxa 

de retorno e o risco tendem a ser mais elevadas que no caso de crédito. A liquidez destes 

investimentos tende a ser alta, mas dependendo da estratégia a duração pode se estender. 

Ações públicas de mercados emergentes (EQ EM) incluem papéis líquidos de empresas 

de capital aberto cujas sedes estão em países em desenvolvimento. Comparado com as empresas 

em países desenvolvidos, a perspectiva de risco e retorno é maior, assim como a dispersão 

dentro da classe de ativos. Apesar de haver uma variação grande, dependendo da bolsa de 

valores onde os papéis são operados, tipicamente a liquidez é menor em países emergentes. 

Dívidas de empresas privadas (PRIV CRED) incluem alocações em créditos de 

companhias de capital fechado. Este investimento é ilíquido uma vez que a retirada do recurso 

antes da conclusão do projeto não é possível. O comportamento desta classe de ativos tende a 

ter uma correlação alta com as dívidas de empresas sem grau de investimento, porém com uma 

taxa de retorno adicional em função da iliquidez. 

Real estate (RE) inclui investimentos ilíquidos imobiliários, destinados a venda, e de 

base imobiliária, destinados à operação. Essa classe de ativos inclui uma gama grande de 

alocações, incluindo, por exemplo, fundos de investimento imobiliário e corretoras de imóveis. 

Assim como as outras alocações ilíquidas, há questionamentos quanto ao método de 

precificação do ativo, que geralmente se dá trimestralmente. Mesmo que cotas do fundo sejam 

negociadas no mercado, o que aumenta a frequência de precificação, há limitações de acesso 

público à informação. 

Ações de empresas privadas (PRIV EQ) incluem participação em empresas de capital 

fechado. Esta classe de ativos é ilíquida e em vários casos pode incluir interferência elevada do 

investidor na companhia. 
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Ativo livre de risco (RF) não é considerada uma classe de ativos nesta abordagem, mas 

corresponde à taxa de retorno resultante de uma alocação considerada livre de risco. 

Tipicamente são usados títulos de dívida do governo federal estadunidense como referências de 

remuneração. O montante não investido em nenhuma das nove classes de ativos é considerado 

alocado em ativo livre de risco. 

A cada uma das classes foi atribuído um índice que corresponde ao comportamento 

médio das taxas de retorno dos ativos classificados neste grupo (vide Tabela 3). 

 

Tabela 3 Classes de ativos 

Símbolo Classe de Ativos Código Índice 

rf Livre de risco RF U.S. 10 Year Treasury Note 

w1 Baixa duração com grau de 

investimento IG SD 

S&P 3-6M US T-bill TR Index 

w2 Dívidas de empresas com grau de 

investimento IG CORP 

Barclay NNG US Aggregate 

w3 Dívidas de empresas sem grau de 

investimento HY CORP 

Bofa US HY Index 

w4 Retorno absoluto ABS RET HFRI Equal Fund Avg 

w5 Ações públicas de mercados 

desenvolvidos EQ DM 

MSCI World USD 

w6 Ações públicas de mercados 

emergentes EQ EM 

MSCI EM USD 

w7 Dívidas de empresas privadas PRIV CRED Cliffwater Direct Lending Index 

w8 Real Estate RE Cambridge associates RE index 

w9 Ações de empresas privadas 

PRIV EQ 

Cambridge associates us private 

equity index 
Fonte: Elaborado pela autora 

 

O uso destes índices envolve algumas limitações, sendo algumas delas destacadas a 

seguir. 

Ao considerar a média das taxas de retorno de todos os ativos de uma determinada 

classe, a possibilidade de incremento de valor decorrente do alpha é desconsiderada. Assim, um 

possível benefício de uma boa seleção de ativos em classes de maior dispersão é ignorado. 

Além disso, índices nem sempre são representativos do mercado de interesse do 

investidor. É possível, por exemplo, que o desenvolvimento de uma classe de ativos seja 

relativamente recente, de maneira que seus principais agentes ainda não tenham se consolidado 

para a formação de um índice representativo. Outro caso comum é a limitação de ativos nos 

quais o investidor está disposto a alocar recursos, de maneira que se incorre em um erro 

decorrente da adoção de todo o índice na representação da classe de ativos.  



70 

 

Uma última limitação destacada é a necessidade de ajustes na formulação para algumas 

classes de ativos, em decorrência de limitação do horizonte de dados históricos disponíveis ou 

de limitação de informações de retorno na frequência pretendida na aplicação. 

 

4.1.2 O cálculo dos parâmetros 

 

Nesta subseção são definidas as unidades amostrais e descritas as formulações para o 

cálculo dos parâmetros. Para isso é necessária a definição dos intervalos a serem considerados 

na coleta dos elementos da amostra de taxas de retorno históricas. Com este objetivo são 

definidos dois intervalos de tempo. Um deles se refere ao período de otimização da alocação, 

que neste caso compreende uma janela de longo prazo. O outro compreende a unidade mínima 

de tempo correspondente à frequência utilizada na coleta de preços dos ativos. 

- 𝑇 é o período considerado para a otimização da alocação do portfólio; 

- 𝑡 é a mínima unidade de tempo entre duas coletas consecutivas de dados sobre o preço 

dos índices das classes de ativos. 

Analogamente à definição dos intervalos considerados também são definidas duas 

métricas para a taxa de retorno. Uma delas compreende a taxa de retorno para um intervalo 𝑇 e 

a outra a taxa de retorno para um intervalo 𝑡. 

- 𝒓(𝑗) 𝜖ℝ𝑁 é o j-ésimo elemento da amostra de taxas de retorno em um intervalo 𝑇; 

- 𝝆(𝒒)𝜖ℝ𝑁  é o q-ésimo elemento da amostra de taxas de retorno em um intervalo 𝑡. 

Para a coleta de dados relacionados à taxa de retorno 𝒓(𝑗), optou-se pela consideração 

de janelas móveis consecutivas que divergem entre si de 𝑡, conforme formulação seguinte. 

𝒓(𝑗) = (𝑽(𝑖+𝑇)./𝑽(𝑖))
1/𝑇
− [
1
⋮
1
] 𝒓(𝑗+1) = (𝑽(𝑖+𝑇+𝑡)./𝑽(𝑖+𝑡))

1/𝑇
− [
1
⋮
1
] 

Onde, 

- 𝑽(𝑖)𝜖ℝ𝑁 é o valor monetário do investimento no instante 𝑖; 

- 𝐽 é o número de elementos da amostra; 

- 𝒂./𝒃 representa a divisão termo a termo dos elementos de 𝒂 pelos elementos de 𝒃. 

Já para a coleta de dados relacionados à taxa de retorno 𝝆(𝒒), a seguinte formulação foi 

utilizada. 

𝝆(𝒒) = (
𝑽(𝑖+𝑡)

𝑽(𝑖)
)

𝑡
𝑇

− [
1
⋮
1
] 



71 

 

Para a aplicação em questão foi escolhido o intervalo de 10 anos para a otimização do 

portfólio e de 1 mês para a unidade mínima de tempo de coleta de dados. A amostra contou 

com 120 elementos, com dados mensais de janeiro de 1998 a dezembro de 2017. O conjunto 

de séries históricas de preços foi obtido através do acesso a um terminal Bloomberg (2018). 

𝑇 = 10 𝑎𝑛𝑜𝑠 𝑡 = 1 𝑚ê𝑠 𝐽 = 120 

 

Definidas as unidades amostrais, podem ser calculadas as métricas consideradas para 

estimação dos parâmetros dos modelos, incluindo taxa de retorno, variância e correlação das 

classes de ativos. 

A estimativa para taxa de retorno das classes de ativos é a média das taxas de retorno 

dos intervalos amostrais de otimização (𝑇). 

𝒓̂ =
1

𝐽
∑𝒓(𝒌)
𝐽

𝑘=1

  

Onde, 

- 𝒓̂𝜖ℝ𝑁 é estimador de taxa de retorno das classes de ativos; 

- 𝒓(𝒌)ℝ𝑁 é k-ésimo elemento da amostra de taxas de retorno. 

Para o cálculo da correlação entre as classes de ativos, foi considerado todo o intervalo 

amostral de taxa de retorno na unidade mínima de tempo. 

𝑐𝑜𝑟𝑟𝑎,𝑏 = 𝑐𝑜𝑟𝑟({𝜌𝑎
(1), 𝜌𝑎

(2), … , 𝜌𝑎
(𝑇/𝑡)}, {𝜌𝑏

(1), 𝜌𝑏
(2), … , 𝜌𝑏

(𝑇/𝑡)}) 

Onde, 

- 𝜌(∙)
(𝑖) é o i-ésimo elemento da amostra de taxas de retorno da classe de ativo (∙) em 

um intervalo 𝑡; 

- 𝑎 e 𝑏 representam duas classes de ativos; 

- 𝑐𝑜𝑟𝑟𝑎,𝑏 é o coeficiente de correlação linear das classes de ativos 𝑎 e 𝑏. 

No caso do cálculo da variância das classes de ativos também foram foram consideradas 

duas métricas: uma para estimar o risco da classe de ativos, que é associado às taxas de retorno 

𝝆(𝒒), e a outra para estimar a incerteza do parâmetro de taxa de retorno, que é associado 𝒓(𝒌). 

Para a variância como métrica de risco, o valor usado é a média das variâncias de 𝝆 

dentro de cada janela móvel de intervalo de tempo 𝑇. 

𝝈̂𝟐 =
1

𝐽
∑ 𝜎̂𝟐({𝝆(𝒌), 𝝆(𝒌+𝟏), … , 𝝆(𝒌+𝑻/𝒕−𝟏)})

𝐽

𝑘=1

 

Onde, 



72 

 

- 𝝈̂𝟐 é estimador da variância utilizada como métrica de risco. 

Já para a variância como métrica de incerteza dos parâmetros, o valor utilizado é a 

variância entre as taxas de retorno dos intervalos de tempo de otimização 𝑇. Este resultado será 

utilizado como parâmetro para a geração de conjuntos de retorno através da simulação de Monte 

Carlo. 

𝝈̂𝒄𝒉
𝟐 = 𝜎̂𝟐({𝒓(𝟏), 𝒓(𝟐), … , 𝒓(𝑱)}) 

- 𝝈̂𝒄𝒉
𝟐  é estimador da variância utilizada como métrica de incerteza de parâmetros. 

 

4.1.3 As restrições lineares 

 

Foram consideradas restrições lineares de alocação (i) de cada classe de ativos 

individualmente, (ii) do total de investimentos ilíquidos do portfólio e (iii) do limite de alocação 

máximo do portfólio todo, conforme formulação seguinte. Esta última restrição implica que são 

considerados apenas portfólios com Exposição Líquida de 100% ao mercado. 

𝑊 = {𝒘|

𝑰𝒘 ≥ 𝑳𝒃
𝑰𝒘 ≤ 𝑼𝒃
𝚪𝐰 ≤ Γ𝑚𝑎𝑥

[1 … 1]𝒘 = 1

}   

Onde, 

- 𝑊 é o conjunto de alocações possíveis que respeitem as restrições lineares; 

- 𝑰𝜖ℝ𝑁 × ℝ𝑁 é matriz identidade; 

-  𝑳𝒃𝜖ℝ
𝑁 é vetor com os limites inferiores de alocação das classes de ativos; 

-  𝑼𝒃𝜖ℝ
𝑁 é vetor com os limites superiores de alocação das classes de ativos; 

- 𝚪𝜖ℤ𝑁 é vetor de números inteiros 𝜖{0; 1} que indica se a classe de ativos é ilíquida (1) 

ou líquida (0); 

- Γ𝑚𝑎𝑥 é escalar entre 0 e 1 que define a máxima alocação total em classes de ativos 

ilíquidas. 

Nas simulações, a proporção de alocação em uma classe de ativos foi limitada ao 

intervalo entre 0 e 1, de forma que não foram permitidas alocações negativas. As classes 

consideradas ilíquidas são tanto dívidas quanto ações de empresas de capital fechado e real 

estate (PRIV CRED, PRIV EQ e RE). Além disso, o limite máximo do total de alocação em 

classes ilíquidas considerado foi de 40%. 

𝑳𝒃 = [
0
⋮
0
] 𝑼𝒃 = [

1
⋮
1
] 𝚪 = [0 … 0 1 1 1] Γ𝑚𝑎𝑥 = 40% 
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4.2 OS DADOS UTILIZADOS 

 

A partir das séries históricas de retorno foram obtidas estimativas de taxas médias de 

retorno e de variância utilizadas como parâmetros dos modelos. Estes valores são mostrados na 

Tabela 4. 

 

Tabela 4 Taxa de retorno e variância das classes de ativos 

Classe de 

ativos 
IG SD 

IG 

CORP 

HY 

CORP 

ABS 

RET 

EQ 

DM 

EQ 

EM 

PRIV 

CRED 
RE 

PRIV 

EQ 
RF 

Taxa de 

Retorno 
3.6% 4.2% 6.2% 6.0% 7.8% 8.5% 10.0% 8.0% 11.8% 3.1% 

Volatilidade 2.5% 5.6% 9.0% 6.0% 15.0% 25.0% 10.5% 15.0% 24.0% 0.0% 

Fonte: Elaborado pela autora 

 

Na subseção 2.3.4 é descrito que o Índice Sharpe é muitas vezes adotado para a tomada 

de decisões sobre a alocação de recursos entre diferentes classes de ativos. Desta forma, este 

indicador foi calculado para os dados da Tabela 4, de forma que o resultado obtido é mostrado 

no Gráfico 15. À primeira vista, utilizando apenas estes dados, as classes de ativos de retorno 

absoluto (ABS RET) e de crédito para empresas de capital fechado (PRIV CRED) parecem se 

destacar. 

 

Gráfico 15 Índice Sharpe para as classes de ativos consideradas 

 

Fonte: Elaborado pela autora 
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Pode-se lembrar, no entanto, que foram descritas limitações de aplicação desta 

representação em virtude da desconsideração da correlação entre as classes de ativos e da 

hipótese de relação linear entre retorno excedente e risco. De fato, se os mesmos dados forem 

observados no plano de representação da fronteira eficiente (vide Gráfico 16) percebe-se que a 

classe de ativos de retorno absoluto (ABS RET) já não parece tão atrativa, ao contrário de ações 

de empresas privadas (PRIV EQ), que ganha relevância. 

 

Gráfico 16 Taxa de retorno e desvio-padrão das classes de ativos consideradas contra fronteira eficiente 

clássica de Markowitz. 

 

Fonte: Elaborado pela autora 

 

4.3 HIPÓTESES ADOTADAS 

 

Definidos os parâmetros a serem utilizados nos modelos, também é importante verificar 

se os dados amostrais são aderentes às hipóteses consideradas, conforme descrito na seção 3.6. 

Entre as hipóteses estão (i) a aproximação das distribuições de taxa de retorno por uma normal 

multivariada, (ii) a baixa variação da volatilidade entre os intervalos de otimização 

considerados e (iii) a correlação razoavelmente constante entre as classes de ativos. 
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4.3.1 Normalidade das taxas de retorno 

 

Muitos dos modelos abordados têm como premissa a distribuição normal de taxas de 

retorno históricas. Para verificar o nível de aderência da amostra à esta hipótese, os dados de 

taxa de retorno no intervalo de tempo que se pretende otimizar foram despostos em um Papel 

de Probabilidade Normal (vide Gráfico 17). Apesar da existência de alguns desvios, pode-se 

notar que a aproximação através destes parâmetros parece razoável. 

 

Gráfico 17  Papel de probabilidade normal aplicado aos elementos da amostra de cada classe de ativos 

 

Fonte: Elaborado pela autora 

 

4.3.2 Dispersão de variância 

 

Outra hipótese considerada é a baixa dispersão das métricas de risco entre os intervalos 

de tempo nos quais pretende-se otimizar o portfólio. Alguns dos modelos abordados consideram 

a amplitude de flutuação de valor de cada classe de ativos como determinística e constante. Para 

o caso de a métrica de risco ser a volatilidade, é esperado que a variância de diferentes janelas 

tenha diferenças pequenas. O Gráfico 18 foi construído através do cálculo da variância de 

conjuntos de taxas de retornos mensais para cada classe de ativos, considerando uma janela 

móvel de 10 anos, conforme definido na subseção 4.1.2. De fato, observando-se o Gráfico 18 é 
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possível notar que parece razoável considerar a variância constante para os intervalos utilizados 

neste texto. 

 

Gráfico 18 Variância como métrica de risco considerando o intervalo mínimo como um mês e o intervalo 

de otimização de alocação de 10 anos 

 

Fonte: Elaborado pela autora 

 

4.3.3 A estrutura da correlação 

 

Por fim é verificada a hipótese de correlação aproximadamente constante entre as 

classes de ativos nos intervalos de otimização considerados (vide Tabela 5). Observa-se que, 

no caso de alocações com baixa duração e grau de investimento (IG SD), a dispersão da 

correlação parece elevada. No entanto, se for considerada a baixa taxa de retorno desta classe 

de ativos, o impacto deste desvio nos resultados dos modelos é menos significativo. Já no caso 

de Real Estate (RE) esta variância pode ter impacto maior nas soluções, de forma que a 

correspondência à realidade da hipótese de correlação constante destes fatores pode ser 

questionada. 
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Tabela 5 Dispersão da correlação entre as classes de ativos em intervalos de 10 anos 

Desvio-
padrão do 
coeficiente 

de 
correlação 

linear 

IG SD 
IG 

CORP 
HY 

CORP 
ABS 
RET 

EQ 
DM 

EQ EM 
PRIV 
CRED 

RE 
PRIV 
EQ 

IG SD 0.0% 5.3% 6.6% 15.1% 11.7% 15.2% 12.7% 6.1% 15.6% 

IG CORP 5.3% 0.0% 1.1% 2.8% 1.0% 3.4% 1.7% 3.1% 2.8% 

HY CORP 6.6% 1.1% 0.0% 2.1% 0.5% 2.5% 2.0% 3.1% 1.3% 

ABS RET 15.1% 2.8% 2.1% 0.0% 0.3% 0.5% 2.2% 7.3% 0.8% 

EQ DM 11.7% 1.0% 0.5% 0.3% 0.0% 0.6% 1.4% 5.6% 1.3% 

EQ EM 15.2% 3.4% 2.5% 0.5% 0.6% 0.0% 3.3% 7.3% 1.0% 

PRIV CRED 12.7% 1.7% 2.0% 2.2% 1.4% 3.3% 0.0% 6.5% 2.6% 

RE 6.1% 3.1% 3.1% 7.3% 5.6% 7.3% 6.5% 0.0% 6.6% 

PRIV EQ 15.6% 2.8% 1.3% 0.8% 1.3% 1.0% 2.6% 6.6% 0.0% 
Fonte: Elaborado pela autora 

 

4.4 COMPARAÇÃO DOS MODELOS 

 

Nesta seção pretende-se comparar os resultados gerados pelos diferentes modelos 

abordados analisando tanto a fronteira eficiente quanto as proporções de alocação dos portfólios 

considerados ótimos. Primeiramente são aplicadas técnicas de verificação das simulações 

computacionais, seguidas da análise do desempenho das soluções frente a uma distribuição de 

taxas de retornos. Por fim, os resultados obtidos são comparados com alocações reais de 

portfólios de instituições financeiras. 

 

4.4.1 Aplicação de técnicas de verificação das simulações 

 

Após a construção de um modelo de simulação computacional é necessário que sejam 

feitos testes com a finalidade de verificar sua aplicação (Pace, 2004), sob a pena de adoção de 

resultados incorretos. Assim, as técnicas de verificação pretendem determinar se uma simulação 

foi construída adequadamente de acordo com as hipóteses do modelo. 

Nesta subseção são aplicadas duas técnicas de verificação dos modelos. (i) Em uma 

delas são comparados resultados de duas resoluções distintas, tal que a condição considerada 

faz com que a abordagem mais complexa recaia no caso de aplicação do modelo mais simples. 

Isso pode ser feito comparando os resultados das duas técnicas de resolução abordadas para o 

modelo clássico de Markowitz (vide seção 3.1), uma delas através de um sistema linear e a 

outra através de programação linear quadrática. (ii) Pode-se também comparar as diferenças 
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entre as fronteiras eficientes. Todos os modelos desenvolvidos buscam otimizar o retorno dado 

um nível limite de risco. Desta forma, é esperado que as fronteiras eficientes dos modelos 

estejam próximas, ainda que não coincidente devido às diferenças nas métricas adotadas. 

A primeira técnica de verificação aplicada pretende comparar os resultados de duas 

técnicas de resolução distintas para o mesmo modelo, sendo esperado que os resultados sejam 

coincidentes (Pace, 2004). Para o modelo clássico de Markowitz a solução mais genérica 

envolve programação linear quadrática. Há, no entanto, uma solução alternativa aplicável em 

um caso específico. Se as restrições lineares do modelo forem todas de igualdade, é possível 

descrever o mesmo problema utilizando um sistema de equações lineares. Desta forma, se os 

parâmetros das simulações estiverem contidos no domínio da aplicação da solução mais 

simples, o que neste caso implica em ausência de restrições de desigualdade, é esperado que as 

soluções ótimas coincidam. O Gráfico 19 mostra como, de fato, as fronteiras eficientes 

comportam-se da maneira esperada. Os resultados para as proporções das alocações encontram-

se no Apêndice C.1. 

 

Gráfico 19 Fronteira eficiente das soluções de Markowitz clássicas 

 

Fonte: Elaborado pela autora 

 

Outra técnica de verificação consiste na comparação de resultados de diferentes modelos 

que pretendem descrever o mesmo fenômeno (Pace, 2004). Como as hipóteses e os parâmetros 

variam, não é esperado que os resultados sejam coincidentes, mas que tenham um 

comportamento similar. Neste texto foram abordados diversos modelos que tem o mesmo 

objetivo de otimizar a alocação de recursos em diferentes classes de ativos. Cada um deles têm 

uma métrica de risco e um conjunto de hipóteses distinto, no entanto, através deste teste de 
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verificação procura-se identificar similaridades entre seus resultados. De fato, as fronteiras 

formadas pelos portfólios ótimos de cada modelo apresentam grande similaridade, conforme 

pode ser visto no Gráfico 20, onde: 

- MK é gerado através da solução clássica genérica de Markowitz; 

- Cvar é gerado através da solução de minimização de Cvar de Rockafellar e Uryasev; 

- MAXR é gerado através da solução de Fabozzi (2007); 

- ROB-LMI é gerado através da solução robusta de Costa e Paiva (2000); 

- MV-AVG é gerado através da solução estocástica de Michaud (1998). 

 

Gráfico 20 Fronteiras eficientes a partir de diferentes modelos 

 

Fonte: Elaborado pela autora 

 

4.4.2 Análise das fronteiras de eficiência 

 

Para a análise dos modelos de otimização de alocação são consideradas duas 

abordagens: em uma delas é avaliado o desempenho do portfólio e na outra é feita a comparação 

com alocações reais de instituições financeiras. Nesta subseção é desenvolvida a primeira 

comparação. 

Para isso, os portfólios ótimos resultantes de diferentes abordagens seriam submetidos 
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de uma amostra cujos elementos não estão contidos no conjunto utilizado para os cálculos dos 

parâmetros dos modelos. No entanto, há limites para o número de elementos da nova amostra, 

uma vez que os índices para algumas classes de ativos são relativamente recentes. Como há 

limitação histórica no conjunto de dados disponíveis, optou-se pela simulação através da 

geração de valores aleatórios utilizando a distribuição normal multivariada com os parâmetros 

obtidos na amostra inicial. Há limitações consideráveis nesta abordagem dado não se trata de 

dados históricos reais, mas a reprodução de um método que, por si só, já carrega erros. 

Para todos os modelos foi simulada uma fronteira eficiente com 50 portfólios ótimos 

igualmente espaçados em função da variância como métrica de risco. Para nenhuma das 

abordagens foi considerada a alocação em ativo livre de risco. 

A primeira comparação é feita entre o modelo clássico de Markowitz e as abordagens 

estocástica e robusta. Desta forma, inicia-se pela descrição dos parâmetros específicos de 

simulação. No caso do modelo de Michaud a formação de agrupamentos foi baseada em nível 

de risco, tendo sido desconsideradas 10% das alocações de cada grupo, tidas como extremas. 

Quanto aos parâmetros de iteração, foram simulados 500 cenários de taxa de retorno, com 50 

pontos igualmente espaçados por fronteira eficiente e 50 agrupamentos de níveis de risco. A 

solução no caso da otimização robusta considerou como parâmetros apenas 1 cenário de 

covariância e 5 cenários de taxas de retorno, gerados através de simulação de Monte Carlo (vide 

Apêndice B.4). Na simulação com a abordagem robusta, o aumento do número de cenários 

considerados eleva consideravelmente a frequência com que ocorrem problemas infactíveis. 

Desta forma, foi possível considerar apenas um total de 5 cenários de taxa de retorno como 

parâmetros de incerteza. 

Definidos os parâmetros parte-se para a comparação do desempenho das alocações. O 

modelo de Markowitz define o conjunto de portfólios ótimos para certos valores dos parâmetros 

de entrada. No entanto, com pequenas alterações destes parâmetros os resultados obtidos 

originalmente podem se tornar bastante ineficientes. Tanto o modelo de otimização robusta 

quanto o modelo estocástico pretendem reduzir a sensibilidade dos resultados a pequenos erros 

nos parâmetros de taxa de retorno de longo prazo das classes de ativos. Desta forma, o portfólio 

ótimo selecionado por estes métodos não é o ótimo para a média da expectativa de retornos, 

mas o ótimo com base em um conjunto de retornos distribuídos normalmente ao redor da média. 

Considere, um cenário hipotético em que na definição dos parâmetros havia incerteza, porém, 

ao final do intervalo de tempo de longo prazo, observou-se que as médias estimadas se 

consolidaram. Neste caso específico, o portfólio de melhor desempenho é o de Markowitz 

clássico. Já os obtidos através de abordagens robusta e estocástica apresentam um desconto de 
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taxa de retorno resultante. O objetivo desta comparação é verificar o tamanho deste desconto 

advindo da incorporação de incerteza na definição dos parâmetros. O Gráfico 21 mostra o 

desempenho dos três conjuntos de portfólios ótimos para o caso de consolidação dos retornos 

médios estimados. Pode-se observar que, para as condições estudadas, o desconto máximo se 

limitou a 0.6% de taxa de retorno para todos os níveis de risco. 

Como o modelo robusto considera a minimização do pior caso de volatilidade, seria 

esperado que o desconto observado por conta da incerteza fosse maior que o obtido com o 

modelo estocástico, que considera a média dos portfólios ótimos. Isso não é evidente no Gráfico 

21Error! Reference source not found. por conta da limitação prática do número de cenários 

considerados no caso da simulação robusta, que totalizou 5 frente a 500 no caso da estocástica. 

Desta forma, com os parâmetros utilizados, a incerteza nas taxas de retorno de longo prazo para 

a abordagem robusta foi subestimada em razão de uma limitação prática da aplicação do 

modelo, associada à alta frequência de situações infactíveis. 

 

Gráfico 21 Fronteiras eficientes para as soluções de Markowitz 

 

Fonte: Elaborado pela autora 
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considerar apenas 200 cenários de taxa de retorno por conta da alta demanda de processamento 

computacional demandada pela solução. No entanto, o impacto desta limitação é bem menos 

relevante do que a presente na abordagem robusta. 

A comparação dos resultados do modelo de Rockafellar e Uryasev com os do modelo 

de Markowitz depende da percepção de risco do investidor, uma vez que as métricas utilizadas 

são diferentes. Se para um investidor a percepção de risco é melhor refletida em volatilidade, 

então o desempenho dos portfólios de Markowitz parecerá melhor (vide Gráfico 22). No 

entanto, se a interpretação de risco do investidor se aproximar mais do conceito utilizado por 

CVar, então o desempenho dos portfólios ótimos do modelo de Rockafellar e Uryasev parecerá 

melhor. 

 

Gráfico 22 Comparativo entre fronteiras eficientes 

 

Fonte: Elaborado pela autora 

 

Por fim, são analisadas as soluções propostas pelo modelo de maximização de retorno. 
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níveis de risco, é necessário que se modifique o coeficiente 𝑘 que representa o desvio máximo 
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apresentando platôs e regiões de derivada infinita (vide Gráfico 24). Desta forma, torna-se mais 

difícil a construção de uma fronteira eficiente com uma distribuição homogênea dos pontos. 

 

Gráfico 23 Fronteira eficiente para maximização do retorno e minimização da volatilidade 

 

Fonte: Elaborado pela autora 

 

Gráfico 24 Retorno e volatilidade em função de k 

 

Fonte: Elaborado pela autora 
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4.4.3 Análise comparativa com alocações reais 

 

Nesta subseção é a desenvolvida a comparação com alocações reais de instituições 

financeiras. Esta análise é complementar à anterior, uma vez que ela dá conta de aspectos até 

então ignorados, como as restrições de mobilidade de alocação entre portfólios com níveis de 

risco próximos. Isto é, um incremento ou redução pequenos do nível de risco pretendido pelo 

investidor não podem envolver uma alteração muito drástica das alocações do portfólio, uma 

vez que na prática há restrições de liquidez para estas movimentações. 

Desta forma, a princípio são abordados alguns exemplos de alocação aplicados por 

instituições que gerenciam portfólios com diferentes classes de ativos, para que algumas 

características possam ser compreendidas. Em seguida, é realizado o confronto das soluções 

abordadas neste texto, para que possam ser definidas algumas hipóteses que delimitam a 

aplicação. 

Dentre as instituições que realizam investimento utilizando lógicas de alocação racional 

destacam-se famílias abastadas, fundos de pensão e endowments: 

a) Famílias com grandes fortunas podem contratar instituições ou montar escritórios 

para gerenciar a alocação de seus recursos. Trata-se de um grupo bastante pulverizado com 

diferentes políticas de investimento e eficiência de portfólio heterogênea. 

b) Fundos de pensão geralmente concentram recursos de funcionários de instituições 

públicas ou privadas com a intenção de gerar retorno para a aposentadoria dos contribuintes. 

Dentre os maiores no Brasil destacam-se Postalis, dos funcionários dos Correios, Funcef, dos 

funcionários da Caixa Econômica Federal, e Petros, dos funcionários da Petrobrás. Geralmente 

há normas rígidas que limitam decisões de alocação de recursos e normalmente apresentam 

eficiência limitada. 

c) Endowments são instituições que pretendem criar um patrimônio, no limite, perpétuo, 

como objetivo de gerar recursos continuamente para conservação, expansão e promoção de 

certa atividade. Isso é feito através de uma alocação racional do recurso. Uma modalidade 

bastante comum é aplicada por universidades conceituadas estadunidenses, com resultados 

utilizados como referência para diversos gestores de portfólio. 

Neste estudo serão considerados dados de endowments de grandes universidades 

estadunidenses, por conta (i) do volume grande de recursos, que normalmente está mais 

pulverizado no caso de famílias, (ii) da verdadeira perspectiva de longo prazo e (iii) da 

existência de maior liberdade de alocação para os gestores, o que geralmente não se verifica no 

caso de fundos de pensão. 
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De fato, pode-se observar no Gráfico 25 que o desempenho dos maiores endowments se 

destaca frente a diferentes instituições de alocação de capital. Observando a comparação com a 

fronteira eficiente de Markowitz, nota-se que há pontos localizados na região infactível, o que 

resultaria em uma aparente incoerência. Há de se recordar, no entanto, que no caso da taxa de 

retorno destas instituições o alpha é considerado, assim como outras classes de ativos não 

discutidas neste texto. 

 

Gráfico 25 Desempenho de instituições de alocação de capital em intervalo de 10 anos contra a fronteira 

eficiente de Markowitz utilizada neste texto. Crédito é modelado pelo índice Bloomberg Barclay US Agg 

Bond e Ações é modelado pelo índice S&P500. 

 

Fonte: laborado pela autora com dados de Yale endowment (2017) e do terminal Bloomberg 
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dos modelos na identificação de todos os possíveis cenários. Desta forma, é possível que 

resultados que incluam alocações extremas sejam menos aderentes à realidade de gestão de 

portfólio em investimentos de longo prazo. 

Outra característica importante das soluções em aplicações reais é a limitação da 

diferença entre portfólios ótimos para níveis de risco próximos. Em situações reais, conforme 

descrito na subseção 2.3.1, há restrições de liquidez que impedem ou dificultam mudanças 

bruscas de alocação em curtos intervalos de tempo. Dessa forma, uma possível necessidade de 

elevação ou redução do nível de risco deve envolver apenas alterações pequenas nas proporções 

das classes de ativos no portfólio. 

 

Tabela 6 Alocação de recursos entre classes de ativos do endowment da Univesidade de Yale. 

Classe de Ativos Alocação (Yale) 

Retorno absoluto 25.1% 

Ações domésticas (EUA) 3.9% 

Renda fixa 4.6% 

Ações estrangeiras (ex-EUA) 15.2% 

Leveraged Buyouts (ações de empresas privadas) 14.2% 

Recursos naturais (real asset) 7.8% 

Real Estate (real asset) 10.9% 

Venture Capital (ações de empresas privadas) 17.1% 

Caixa 1.2% 
Fonte: Yale endowment (2017) modificado 

 

Gráfico 26 Alocação histórica entre classes de ativos do endowment de Yale 

 

Fonte: Yale endowment (2017) modificado 
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As características identificadas nos portfólios reais destas instituições financeiras são, 

então, comparadas com as soluções propostas pelos modelos desenvolvidos. Para isso deve-se 

observar uma volatilidade próxima a 13%, que coincide com o histórico do endowment de Yale 

(conforme já mostrado no Gráfico 25). 

Primeiramente é analisado o resultado de alocação do modelo clássico de Markowitz. 

No Gráfico 27 são mostradas as proporções de alocação dos portfólios sugerido para cada nível 

de volatilidade. É possível observar que os resultados parecem bastante extremos e instáveis. 

Isso é, a alocação ótima por esse método envolve poucas classes de ativos e grande sensibilidade 

a pequenas variações do limite de risco máximo pretendido. No caso do nível de volatilidade 

histórico do endowment Yale (13%) o resultado prevê, ao invés da diversificação observada na 

Tabela 6, a alocação em principalmente duas classes de ativos, ações de países desenvolvidos 

(EQ DM) e crédito a empresas de capital fechado (PRIV CRED). 

Esse comportamento é consequência, sobretudo, da consideração de taxas de retorno 

determinísticas para as classes de ativos em intervalos de longo prazo. Conforme visto 

anteriormente, há um grande impacto desta premissa nos resultados de alocação considerando 

a sensibilidade do modelo a variações deste parâmetro. Dessa forma, a aplicação de seus 

resultados é limitada para o caso abordado. 

Portanto, a aplicação deste modelo parece ser mais adequada em casos nos quais (i) há 

pouca incerteza das taxas de retorno de longo prazo das classes de ativos, (ii) há facilidade e 

rapidez na execução de mudanças grandes de proporções de alocação de um portfólio e (iii) a 

distribuição das taxas de retornos históricas se aproximam da distribuição de probabilidade 

normal. 
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Gráfico 27 Portfólios ótimos para diferentes limites de risco obtidos através da resolução clássica de 

Markowitz 

 

Fonte : Elaborado pela autora 

 

A mesma análise é agora aplicada para as sugestões de alocação obtida através do 

modelo de maximização do retorno. O resultado (vide Gráfico 28) é bastante similar ao clássico 
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é um requisito essencial, (iii) há facilidade em mudanças extremas de alocação do portfólio e 

(iv) distribuição das taxas de retorno pode ser aproximada por curvas normais. 
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Gráfico 28 Alocações entre as classes de ativos para diferentes níveis de risco com o modelo de 

maximização da taxa de retorno 

 

Fonte: Elaborado pela autora 
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EM), crédito de empresas de capital fechado (PRIV CRED) e ações de empresas de capital 
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considera minimização da volatilidade do pior caso entre a combinação linear dos cenários 
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considerados, a resolução pode se tornar praticamente inviável em virtude do aumento da 

frequência de ocorrência de problemas infactíveis. 

Dessa forma, este modelo parece ter um desempenho melhor nos casos nos quais (i) há 

maior preocupação em preservação de valor e não necessariamente ampliação de ganhos, (ii) o 

comportamento histórico das taxas de retorno pode ser representado por um conjunto pequenos 

de cenários de retorno e (iii) a distribuição das taxas de retornos históricas se aproximam da 

distribuição de probabilidade normal.  

Já abordagem de Michaud (vide Gráfico 30) apresenta transições mais graduais de 

alocação entre portfólios com níveis de volatilidade próximos. Além disso, há distribuição da 

proporção das alocações dos portfólios em muitas das classes de ativos. No mesmo nível de 

volatilidade do portfólio do endowment de Yale (13%), há investimento em todas as classes de 

ativos consideradas. Desta forma, o modelo de Michaud é o que mais se aproximas das 

características observadas nos portfólios reais de instituições financeiras. 

A abordagem estocástica apresenta uma vantagem importante ao definir um conjunto 

de portfólios para cada nível de volatilidade. Desta forma, é possível definir não apenas um 

portfólio, mas um intervalo de alocação otimizado, de forma que podem ser feitos pequenos 

ajustes de alocação sem o risco de afastamento muito relevante do ponto eficiente. Isso é 

bastante relevante se for considerada a necessidade de rebalanceamento e alocação tática de 

portfólio, conforme discutido na subseção 2.3.7. 

Desta forma, esta abordagem parece ter desempenho melhor quando (i) há incerteza 

considerável, mas limitada das taxas de retorno de longo prazo das classes de ativos, (ii) 

investimento demandam tempo para realocação e (iii) a distribuição do histórico de taxas de 

retorno das classes de ativos se aproxima de distribuições normais de probabilidade. 
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Gráfico 29 Alocação entre classes de ativos obtida através da abordagem de otimização robusta 

 

Fonte: Elaborado pela autora 

 

Gráfico 30 Portfólios médios para diferentes níveis máximos de risco considerando a abordagem 

estocástica 

 

Fonte: Elaborado pela autora 
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Por fim, o modelo de Rockafellar e Uryasev gera as sugestões de alocação mostradas 

no Gráfico 31. Apesar de haver maior distribuição de investimento entre as classes de ativos se 

comparado com o modelo clássico de Markowitz, ainda há afastamento importante das 

características identificadas nas aplicações reais. No nível de volatilidade do portfólio do 

endowment de Yale (13%) a alocação se concentra somente em duas classes de ativos: ações 

de países desenvolvidos (EQ DM) e crédito de empresas de capital fechado (PRIV CRED). As 

transições entre portfólios de níveis de volatilidade próximos são mais bruscas que as obtidas 

no modelo de Michaud. 

Cabe ressaltar também que a simulação se torna menos eficiente com o aumento do 

número de cenários. A limitação não é tão grande quanto no caso da abordagem de otimização 

robusta, de forma que um número considerável de parâmetros pode ser utilizado, o que, no 

entanto, implicou no aumento significativo do tempo de processamento do computador 

utilizado. 

Desta forma, este modelo é aplicável para os casos em que (i) a distribuição histórica de 

taxas de retorno não pode ser aproximada por uma normal, (ii) há relativa flexibilidade na 

mudança de alocação de recursos e (iii) o comportamento das taxas de retorno históricas pode 

ser representado por um número limitado de cenários. 

 

Gráfico 31 Alocação entre as classes de ativos dos portfólios ótimos para modelo de minimização de Cvar 

 

Fonte: Elaborado pela autora 
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5 CONCLUSÃO 

 

Este trabalho teve como objetivo comparar diferentes modelos descritos na literatura 

para a otimização da alocação de recursos em horizontes de longo prazo. Dado que a solução 

clássica de Markowitz apresenta limitações importantes de aplicações em casos reais, foram 

consideradas alternativas, a saber: um modelo que utiliza processos estocásticos, um modelo de 

otimização robusta, um modelo de minimização de CVar e um modelo de maximização de 

retorno. 

Primeiramente foi necessária a construção de uma fundamentação teórica para que as 

métricas de comparação de diferentes portfólios pudessem ser definidas. Desta forma, foram 

descritos conceitos como risco, retorno, liquidez, classes de ativos e fronteira eficiente. 

Posteriormente os modelos de otimização abordados neste trabalho de formatura foram 

descritos e suas hipóteses discutidas. Cada uma das alternativas foi implementada com o auxílio 

de ferramentais de simulação computacional (Scilab). 

Pôde-se, então, definir as classes de ativos utilizadas e os parâmetros de entrada de cada 

um dos modelos para que as simulações fossem executadas. Aos resultados foram aplicados 

testes de verificação a fim de garantir que a construção foi feita de maneira correta. 

Os portfólios sugeridos pelos diferentes modelos foram submetidos a condições de taxas 

de retorno simuladas, tal que se pudesse comparar o desempenho de cada um deles. Para 

complementar esta análise também foi realizado o confronto das soluções obtidas com 

alocações reais de instituições financeiras. 

Aplicando tais procedimentos foi possível identificar que a abordagem de Michaud 

obteve resultados bastante aderentes a portfólios considerados eficientes. Dessa forma, muitos 

destes conceitos foram utilizados para embasar a construção do modelo que já encontra 

aplicações reais de apoio à tomada de decisão na empresa em que o programa de estágio se 

desenvolveu. 

Sugere-se como proposta de continuidade do presente trabalho a consideração de 

modelos mais complexos para a melhoria da descrição da relação entre os retornos das classes 

de ativos. Estes modelos poderiam ser aplicados tanto nas simulações de Monte Carlo utilizadas 

quanto na melhoria do cálculo de risco resultante de um portfólio. 

Outra possível continuidade deste trabalho de formatura refere-se à incorporação de 

outros fatores que influenciam o comportamento das classes de ativos. Isto é, medidas como 

taxa de juros e crescimento econômico, por exemplo, apesar de não necessariamente serem 
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alvos diretos de investimento, podem contribuir para a redução da incerteza da expectativa de 

taxas de retorno das alocações de longo prazo. 
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APÊNDICE A 

 

Neste capítulo são expostos os códigos em Scilab utilizados para a execução das 

simulações computacionais. 

 

A.1 SOLUÇÃO DE SISTEMA DE EQUAÇÕES LINEARES 

 

//-------------------------Inputs-------------------------------------- 
from=0.0 //min return 
to=2.8/100 //max return 
incr=0.0001 //incremento para return 
dim=8 // numero de asset classes 
//-----------------------------Conexao com Excel------------------ 
[fd,SST,Sheetnames,Sheetpos] = 
xls_open('C:\Users\User\Desktop\Dados_Resultados_M
odelo.xls') 
[Value,TextInd] = xls_read(fd,Sheetpos(1)) ; mclose(fd) 
avgret=from ; M=[] 
while avgret <= to 
    //-------------------------------construção matriz A------------ 
    for i=1:dim 
        for j=1:dim 
            A(i,j)=Value(6+i,2+j) 
        end; 
        A(i,dim+1)=-Value(3,2+i) 
        A(i,dim+2)=-1.0 
        b(i)=0 
        A(dim+1,i)=Value(3,2+i) 
        A(dim+2,i)=1.0 
    end; 

    for i=(dim+1):(dim+2) 
        for j=(dim+1):(dim+2) 
            A(i,j)=0.0 
        end 
    end 
    b(dim+1)=-avgret 
    b(dim+2)=-1.0 
     
    //---------------------------------Linear solver---------------- 
    [x0,kerA]=linsolve(A,b) 
    avgret=avgret+incr 
    M=[M;x0.'] 
end 
//---------------------------------create csv file------------------ 
csvWrite(M,'C:\Users\User\Desktop\result_markshort.
csv') 
 

 

 

A.2 SOLUÇÃO DE PROGRAMAÇÃO QUADRÁTICA 

 

//-----------------------------Conexao com Excel------------------ 
[fd,SST,Sheetnames,Sheetpos] = 
xls_open('C:\Users\User\Desktop\Dados_Resultados_M
odelo.xls') 
[Value,TextInd] = xls_read(fd,Sheetpos(1)) 
mclose(fd) 
//-----------------------------Construcao Matriz------------------- 
M=[] 
for i=1:dim 
    C(1,i)=Value(3,2+i) 
    C(2,i)=1.0 ;  ci(i)=0.0 ; cs(i)=1.0 ; p(i)=0.0 
    for j=1:dim 
        Q(i,j)=Value(i+6,j+2) 
    end 
end 
C=[C;[0,0,0,0,0,1,1,1]] ; b(2)=1 ; b(3)=illiqmax ; me=2 
//---------------------------Calculo Ini e Fim----------------------- 
ini=min(C(1,:)) 
max1=0.0; max2=0.0 
min1=max(C(1,:)) ; min2=max(C(1,:)) 

for i=1:3 
    if min1 > C(1,i+5) then min1 = C(1,i+5) end 
    if max1 < C(1,i+5) then max1=C(1,i+5) end 
end 
for i=1:5 
    if max2 < C(1,i) then max2=C(1,i) end 
    if min2 > C(1,i) then  min2=C(1,i) end 
end 
fim= max((illiqmax * max1) + ((1-illiqmax) * 
max2),max2) 
ini=min((illiqmax * min1) + ((1-illiqmax) * min2),min2) 
 
avgret=ini+incr 
while avgret <= fim 
    b(1)=avgret 
    [x0,iact,iter,f]=qpsolve(Q,p,C,b,ci,cs,me) 
    M=[M;x0.'] 
    avgret=avgret+incr 
end 
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A.3 SOLUÇÃO DE PROGRAMAÇÃO CVAR 

 

rand("seed",getdate('s')) ; rand("normal") 
function y=retornos(NClass, NRet, LTM, R) 
//gera NRet conjuntos de retornos equiprováveis com 
NClass classes de ativos 
    for h=1:NRet 
        for i=1:NClass   z(i)=rand() end 
        for i=1:NClass 
            aux=0.0 
            for j=1:NClass    aux=aux+LTM(i,j)*z(j) end 
            aux=aux+R(i) 
            R_der(h,i)=aux 
        end 
    end 
    y=R_der 
endfunction 
//geração de conjuntos de retornos equiprováveis 
LTM=choleskey(Ach,NClass) 
R_der=retornos(NClass,NVar,LTM,R) 
 
//equality constraints: sum(wi)=1 
beq=[1.0] ; Aeq(1:NClass)=1.0*ones(NClass,1) 
Aeq(NClass+1:(NClass+NVar+1))=0.0*ones(NVar+1,1) 
//fo inputs: alpha+avg(zi)/(1-beta) 
C(1:NClass)=0.0*ones(NClass,1)//weights 
C(NClass+1)=1.0//alpha 
C(NClass+2:(NClass+NVar+1))= 
           (1/((1-vbeta)*NVar))*ones(NVar,1)//z 
//inequality constraints 
    //return: sum(wi*ri)>=R 
for i=1:NClass  Aineq(1,i)=-mean(R_der(:,i))end 
Aineq(1,NClass+1:(NClass+NVar+1))=0.0*ones(1,NVar+
1) 
    //liquidity: sum(w illiq)<=illiqmax 
Aineq(2,1:NClass)=Value(18,4:(NClass+3)) 
Aineq(2,NClass+1:(NClass+NVar+1))=0.0*ones(1,NVar+
1) 
bineq(2)=illiqmax 
    //-zi+sum(rjwj)-alpha<=0 
Aineq(3:(2+NVar),1:NClass)=R_der 
Aineq(3:(2+NVar),NClass+1)=-1.0*ones(NVar,1) 
Aineq(3:(2+NVar),(NClass+2):(NClass+1+NVar))= 
           eye(NVar,NVar).*(-1) 
bineq(3:(2+NVar))=0.0*ones(1,NVar) 
//limites de alocacao 
    //Ub e Lb 
    ALim(1:NClass,1:NClass)=eye(NClass,NClass) 
    ALim((NClass+1):(2*NClass),1:NClass)= 
            (-1)*eye(NClass,NClass) 
    ALim(1:(2*NClass),(NClass+1):(NClass+1+NVar))= 
           zeros(2*NClass,NVar+1) 
    bLim(1:NClass,1)=Value(16,4:(NClass+3)).' 
    bLim((NClass+1):(2*NClass),1)=(-
1)*Value(17,4:(NClass+3)).' 
 

    //zi: zi>=0 
ALim((2*NClass+1):(2*NClass+NVar),(NClass+2):(NCla
ss+1+NVar))= 
            (-1)*eye(NVar,NVar) 
    ALim((2*NClass+1):(2*NClass+NVar),1:(NClass+1))= 
           zeros(NVar,NClass+1) 
    
bLim((2*NClass+1):(2*NClass+NVar),1)=zeros(NVar,1) 
//ponto minimo risco 
[xmin,cvar_min,ehsol]= 
        karmarkar(Aeq.',beq, 
[],[],[],[],[],[Aineq(2:(2+NVar),:); 
         ALim], [bineq(2:(2+NVar),:);bLim]) 
ini=R*xmin(1:NClass) 
//ponto de maximo retorno [retorno ; cs ; illiq ; retorno ; 
ci] 
matriz(1,1:NClass)=(-1)*Aineq(1,1:NClass)//retorno 
matriz(2,1:NClass)=Value(16,4:(3+NClass))//cs 
matriz(3,1:NClass)=Value(18,4:(3+NClass))//illiq 
matriz(4,1:NClass)=(-1)*Aineq(1,1:NClass)//retorno 
matriz(5,1:NClass)=Value(17,4:(3+NClass))//ci 
fim=extremo(matriz,illiqmax,'d',NClass) 
 
//fronteira eficiente - min c.'*x tq Aeq*x=beq and Ax<=b 
and lb<=x<=ub 
incr=(fim-ini)/NPontos 
avgret=ini+0.00000000001 
M=[] 
while avgret <= fim 
    bineq(1)=-(avgret-0.000000000001) 
    [xoti,cvar,ehsol]= 
               karmarkar(Aeq.',beq,C, 
[],[],[],[],[],[Aineq;ALim],[bineq;bLim]) 
    if ehsol==1 then 
        M=[M;[cvar, (-1)*Aineq(1,1:NClass)*xoti(1:NClass), 
xoti(1:NClass).']] 
    end 
    avgret=avgret+incr 
end 
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A.4 SOLUÇÃO DE PROGRAMAÇÃO QUADRÁTICA ESTOCÁSTICA 

 

//Numero de classes de ativos 
NClass=Value(11,3) 
//Monta matriz covariância e vetor de retornos 
for i=1:NClass 
    R(i)=Value(15,3+i) 
    for j=1:NClass 
        A(i,j)=Value(i+60,j+3) 
        A_CH(i,j)=Value(i+41,j+3) 
    end 
end 
//Choleskey Decompose 
LTM=choleskey(A_CH,NClass) 
b(2)=1 ; b(3)=illiqmax ; me=2 
//calculo ponto de min vol 
[x0oti,iact,iter,f]=qpsolve(A,p,C(2:3,:),b(2:3),ci,cs,me-1) 
//estatisticas para cortes nas fronteiras 
minvol=0.0 
for j=1:NClass 
    for i=1:NClass 
        minvol = minvol + (x0oti(j)*x0oti(i)*A(i,j)) 
    end 
end 
maxvol=0.0 
for j=1:NClass 
    if A(j,j)>maxvol then maxvol=A(j,j) end 
end 
lmax=Value(3,3) ; tamanho=Value(7,3) 
concent=Value(6,3) ; maxvol=maxvol^0.5 
minvol=minvol^0.5 
lmed=round((lmax+1)*concent) 
medvol=(maxvol-minvol)*tamanho 
intervalo1=(medvol-minvol)/lmed 
intervalo2=(maxvol-medvol)/(lmax+1-lmed) 
//definição de tamanho dos diferentes intervalos 
for i=1:lmed  
    LinhaCorteX(i)= ((i-1)*intervalo1)+minvol 
end 
for i=lmed:(lmax+1) 
    LinhaCorteX(i)= ((i-lmed)*intervalo2)+medvol 
end 
LinhaCorteX=LinhaCorteX.^2.0 
maxvol=maxvol^2.0 ; minvol=minvol^2.0 
 

for h=1:Value(10,3) 
    ini=0.0 ;  fim=0.0 
    while (fim-ini)< 0.00000001 
        //Geracao da distribuicao para cada curva 
        for i=1:NClass  z(i)=rand()end 
        for i=1:NClass 
            aux=0.0 
            for j=1:NClass aux = aux + LTM(i,j)*z(j) end 
            aux=aux+R(i) ; R_der(i)=aux 
        end 
        for i=1:NClass  C(1,i)=R_der(i) end 
        //Definicao de Ini e Fim 
        ini=0.0 
        for j=1:NClass 
            ini = ini + (x0oti(j)*R_der(j)) 
        end 
        matriz=[R_der.';cs.';MIlliq.';R_der.';ci.'] 
        fim=extremo(matriz,illiqmax,'d',NClass) 
        incr=(fim-ini)/(Value(9,3)) 
        avgret=ini+0.00000000001 
    end 
    //Solucao markowitz 
    while avgret <= fim 
        b(1)=avgret-0.000000000001 
        [x0,iact,iter,f]=qpsolve(A,p,C,b,ci,cs,me) 
        retorno=0.0 ; retorno_exp=0.0 ; vol=0.0 
        for i=1:NClass 
            retorno = retorno + (x0(i)*R_der(i)) 
            retorno_exp = retorno_exp + (x0(i)*R(i)) 
            for j=1:NClass vol = vol + (x0(i)*x0(j)*A(i,j)) end 
        end 
        M=[M;[retorno_exp;retorno;vol;x0].'] 
        avgret=avgret+incr 
    end 
    for i=1:(lmax+1) 
        pl=LinhaCorteX(i) 
        [pval,pindx]=min(abs(M(:,3)-pl)) 
        NR(:,i,h)=M(pindx,1:(NClass+3)) 
    end 
    CURVAS=[CURVAS;M] ; M=[] 
end 
 

 
 

  



102 

 

A.5 TRATAMENTO ESTATÍSTICO PROGRAMAÇÃO QUADRÁTICA ESTOCÁSTICA 

 

 
lim_inf=round((h+1)*(1-conf)*0.5)+1 
lim_sup=round((h+1)*(1+conf)*0.5)-1 
 
for j=1:(lmax+1) 
    //vol da linha de corte j 
    //VOL_CORTE(j)=(((maxvol-minvol)*(j-1)/lmax) + 
minvol)^0.5 
    for i=1:(NClass+3) 
        for k=1:Value(10,3) ND(i+1,k)=NR(i,j,k) end 
    end 
    //calculos para cada linha 
    for i=1:(NClass+3) 
AVG_WGT_ALL(j,i)=mean(ND(i+1,:)) end 
    //calculo de C=sum dW1*dW2*Cov1,2 
    for k=1:Value(10,3) 
        ND(1,k)=0.0 
        for i=5:(NClass+4) 
            for ni=5:(NClass+4) 
                ND(1,k)=ND(1,k)+(ND(i,k)-AVG_WGT_ALL(j,i-
1))*(ND(ni,k)-AVG_WGT_ALL(j,ni-1))*A(i-4,ni-4) 
            end 
        end 
    end 
    // decrescente em função de C 
    ND=gsort(ND,'lc','d') 
    //calculo avg, top, bottom 
    for i=1:(NClass+4) 
        AVG_WGT(j,i)=mean(ND(i,lim_inf:lim_sup)) 
        Pavg= 
DadoValorRetornaPercentil(AVG_WGT(j,i),ND(i,lim_inf:l
im_sup)) 
        if Pavg<pctl then 
            TOP_PERC(j,i)=AVG_WGT(j,i) 
        else 
            TOP_PERC(j,i)=DadoPercentilRetornaValor(Pavg-
(pctl*0.5),ND(i,lim_inf:lim_sup)) 
        end 
        if Pavg>(1-pctl) then 
            BOT_PERC(j,i)=AVG_WGT(j,i) 
        else 
BOT_PERC(j,i)=DadoPercentilRetornaValor(Pavg+(pctl*
0.5),ND(i,lim_inf:lim_sup)) 
        end 
    end 
end 
 

for k=1:(lmax+1) 
    VOL_PORT_MEDIO(k)=0.0 
    for i=1:NClass 
        for j=1:NClass VOL_PORT_MEDIO(k) = 
VOL_PORT_MEDIO(k) + 
(A(i,j)*AVG_WGT(k,i+4)*AVG_WGT(k,j+4)) end 
    end 
    VOL_PORT_MEDIO(k)=VOL_PORT_MEDIO(k)^0.5 
end 
VOL_CORTE=LinhaCorteX^0.5 
AVG_WGT(:,4)=VOL_PORT_MEDIO 
TOP_PERC(:,4)=TOP_PERC(:,4).^0.5 
BOT_PERC(:,4)=BOT_PERC(:,4).^0.5 
CURVAS(:,3)=CURVAS(:,3).^0.5 
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A.6 SOLUÇÃO PROGRAMAÇÃO ROBUSTA LMI 

 

global matF 
global Aport 
global Rder 
global Eret 
global Rfree 
 
function [LME, LMI, OBJ]=evalfunct(XLIST) 
    [alpha,W]=XLIST(:) 
    OBJ=alpha 
    LME=[] 
    dim=size(W)(1,1) 
    F=matF(:,:,1) 
    for i=1:dim 
        F=F+W(i)*matF(:,:,i+1) 
    end 
    H(1,1)=alpha 
    H(1,2:(1+dim))=W.'*Aport 
    H(2:(1+dim),1)=Aport*W 
    H(2:(1+dim),2:(1+dim))=Aport 
    LMI=list(F,H) 
    dim2=size(Rder)(1,1) 
    for i=1:dim2 
        LMI(i+2)=Rder(i,:)*W-
(ones(1,dim)*W)*Rfree-Eret+Rfree 
    end 
endfunction 
 
//Inputs do modelo 
illiqmax=Value(3,3)+0.00000000001 
NPontos=Value(4,3) 
NClass=Value(5,3) 
Rfree=Value(6,3) 
NVar=Value(7,3) 
Aport(1:NClass,1:NClass)=Value(58:(57+NClass),4
:(3+NClass)) 
Ach(1:NClass,1:NClass)=Value(39:(38+NClass),4:(
3+NClass)) 
R=Value(12,4:(3+NClass)).' 
illiq=Value(18,4:(3+NClass)).' 
 

//Matrizes variáveis globais 
matF=zeros(2+NClass,2+NClass,1+NClass) 
for i=1:NClass 
    matF(i,i,i+1)=1.0 
end 
matF(1+NClass,1+NClass,1)=illiqmax 
matF(2+NClass,2+NClass,1)=1 
matF(1+NClass,1+NClass,2:(1+NClass))=-illiq 
matF(2+NClass,2+NClass,2:(1+NClass))=-
ones(NClass,1) 
 
//geração de conjuntos de retornos equiprováveis 
LTM=choleskey(Ach,NClass) 
Rder=retornos(NClass,NVar,LTM,R) 
 
//ponto de mínimo retorno 
ini=Rfree 
fim=0.085 
 
//fronteira eficiente 
incr=(fim-ini)/NPontos 
avgret=ini+0.00000000001 
M=[] 
X0=list(max(Aport),(1/NClass)*ones(NClass,1)) 
while avgret <= fim 
    Eret=avgret 
    XLIST=lmisolver(X0,evalfunct) 
    XLIST=XLIST(2) 
    
M=[M;XLIST.',XLIST.'*R,(XLIST.'*Aport*XLIST)^0.
5] 
    avgret=avgret+incr 
end 
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APÊNDICE B 

 

Neste capítulo são expostos alguns desenvolvimentos complementares àqueles 

apresentados no texto. 

 

B.1 ESTIMADOR COERENTE 

 

Um estimador considerado coerente é aquele em que a probabilidade do valor absoluto 

de o seu desvio em relação ao valor real ser menor que um valor muito pequeno (𝛿 > 0) tende 

a 1 quando o tamanho da amostra tende a infinito. 

𝑃(|𝛼̂ − 𝛼| < 𝛿)
𝑛→∞
→   1 

Onde, 

- 𝑃(𝑋) é a probabilidade de ocorrência do evento 𝑋; 

- 𝛼 é o valor que se pretende estimar; 

- 𝛼̂ é um estimador coerente de 𝛼; 

- 𝛿 é um escalar positivo muito pequeno; 

- 𝑛 é o tamanho da amostra. 

 

B.2 CONVEXIDADE DA FUNÇÃO OBJETIVO 

 

Uma forma de verificar que a função objetivo 𝑓(𝒘) = 𝜎𝑝(𝒘) = 𝒘’𝝈𝒘 é convexa é 

através do cálculo da matriz Hessiana ∇²𝑓(𝒘). 

∇2𝑓(𝑤̅) = [

𝜎11 ⋯ 𝜎1𝑗
⋮ ⋱ ⋮
𝜎𝑛𝑗 ⋯ 𝜎𝑛𝑛

] 

Segundo Silva (2005), ao respeitar as três condições seguintes, conclui-se que C é 

conjunto convexo. 

Ora, se vale que (Silva, 2005): 

(1) 𝑓 contínua definida em 𝐶 ∈ 𝑅𝑛, 𝑓: 𝐶 → 𝑅 

(2) ∇2𝑓(𝑤̅) ≥ 0 

(3) todos os autovalores da matriz Hessiana são maiores ou iguais a zero 

 

B.3 CONDIÇÕES DE KKT 
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Para verificar se a solução do problema de otimização linear quadrático é o mínimo 

global, pode-se utilizar as condições de KKT (Silva, 2005): 

(1) Factibilidade: 𝑔𝑖(𝑥
∗) − 𝑏𝑖 é factível para as restrições de igualdade e desigualdade 

(2) Sem direção de maior aproximação da função objetivo do mínimo em que a solução 

continue factível: ∇f(𝑥∗) − ∑ 𝜆𝑖𝑔𝑖(𝑥
∗)𝑚

𝑖=1 = 0 para as restrições de igualdade e 

desigualdade 

(3) Folga Complementar: 𝜆𝑖(𝑔𝑖(𝑥
∗) − 𝑏𝑖) = 0 para todo i de restrições de desigualdade 

(4) 𝜆𝑖
∗ ≥ 0 para todo i de restrições de desigualdade 

Onde, 

- 𝑔 são as restrições; 

- 𝑏 é o vetor de termos independentes; 

- 𝑥∗𝜖ℝ𝑁 é solução ótima.  

 

B.4 GERAÇÃO DE VALORES ALEATÓRIOS PARA DISTRIBUIÇÃO NORMAL 

MULTIVARIADA 

 

Na resolução dos modelos, foi utilizada geração de valores aleatórios de taxa de retorno 

através de simulações de Monte Carlo. Estes valores devem respeitar a matriz de covariância e 

os parâmetros de uma distribuição normal 𝑁(𝜇, 𝜎) do retorno histórico de cada investimento. 

Primeiramente é necessário fazer o cálculo da matriz de covariância das taxas de retorno 

para o intervalo de tempo que se pretende otimizar. Note que esta matriz é uma métrica de 

incerteza do parâmetro de taxa de retorno, diferentemente daquela utilizada como métrica de 

risco, que representa a variância na unidade mínima de tempo considerada. 

A seguir é necessário fazer a decomposição desta matriz de covariância da incerteza, tal 

que ela possa ser escrita unicamente como o produto de uma matriz triangular inferior com 

elementos positivos na diagonal por sua transposta. 

𝝈𝒄𝒉
𝟐 = 𝑮𝑮′ 

Onde,  

- 𝑮𝜖ℝ𝑁 ×ℝ𝑁 é matriz triangular inferior com elementos positivos na diagonal; 

- 𝝈𝒄𝒉
𝟐𝜖ℝ𝑁 ×ℝ𝑁 é a matriz de covariância das taxas de retorno no intervalo de tempo 

considerado para a otimização; 

- 𝑔𝑖𝑗 é elemento que compõe 𝑮. 
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Como a matriz de covariância é simétrica e positiva definida, ou seja, 𝝈 = 𝝈′ e os 

menores principais têm determinante positivo (Critério Sylvestre), pode-se fazê-lo através do 

método Cholesky. 

{
 
 

 
 𝑔11 = √𝑎11

𝑔𝑖𝑖 = √𝑎𝑖𝑖 −∑𝑔𝑖𝑘
2

𝑖−1

𝑘=1

 

{
 
 

 
 𝑔𝑖1 =

𝑎𝑖1
𝑔11

 𝑝𝑎𝑟𝑎 𝑖 = 1,2, … ,𝑁

𝑔𝑖𝑗 =
𝑎𝑖𝑗 − ∑ 𝑔𝑖𝑘

 𝑔𝑗𝑘
 𝑗−1

𝑘=1

𝑔𝑗𝑗
 𝑝𝑎𝑟𝑎 𝑗 = 2,3, … , 𝑖

 

Posteriormente a matriz decomposta é multiplicada por um vetor de variáveis aleatórias 

normais de média zero e desvio-padrão unitário. O resultado, então, é somado ao vetor de 

retorno médio das estratégias de investimento. Dessa forma, se obtém, para cada vetor gerado 

aleatoriamente, um valor de simulação. 

𝑹𝒅𝒆𝒓 = 𝑮𝒛 + 𝒓 

Onde, 

- 𝒛𝜖ℝ𝑁 é o vetor de valores aleatórios normais 𝑁(1,0); 

- 𝑹𝒅𝒆𝒓𝜖ℝ
𝑁 é um vetor que faz parte do conjunto gerado para a simulação. 

 

B.5 LINEARIZAÇÃO UTILIZANDO O COMPLEMENTO DE SCHUR 

 

Pretende-se linearizar a restrição utilizando o complemento de Schur. 

𝒘′𝝈(𝒋)𝒘 ≤ 𝛼 𝑝𝑎𝑟𝑎 𝑗 = 1,2, … , 𝑛 

Para isso pode-se reescrever a restrição  

𝒘′𝝈(𝒋)𝒘 = 𝒘′𝝈(𝒋)𝝈(𝒋)
−𝟏
𝝈(𝒋)𝒘 ≤ 𝛼  

𝝈(𝒋) ≥ 𝟎 

e fazer uso da seguinte equivalência. 

[
𝑄(𝑥) 𝑆(𝑥)

𝑆(𝑥)′ 𝑅(𝑥)
] > 0 𝑄(𝑥) 𝑒 𝑅(𝑥) 𝑠𝑖𝑚é𝑡𝑟𝑖𝑐𝑎𝑠  ⇔  

𝑅(𝑥) > 0 

𝑄(𝑥) − 𝑆(𝑥)𝑅(𝑥)−1𝑆(𝑥)′ > 0
 

Note que se for considerado que 

𝑄(𝑥) = 𝛼, 𝑆(𝑥) = 𝒘′𝝈(𝒋) 𝑒 𝑅(𝑥) = 𝝈(𝒋) 

então a restrição é equivalente à formulação 

[ 𝛼 𝒘′𝝈(𝒋)

𝝈(𝒋)𝒘 𝝈(𝒋)
] ≥ 0  𝑝𝑎𝑟𝑎 𝑗 = 1,2, … , 𝑛. 

 

B.6 APLICAÇÃO DE MULTIPLICADORES DE LAGRANGE PARA A SOLUÇÃO DO 

MODELO DE MARKOWITZ PARA UM CASO PARTICULAR 



108 

 

 

Dada a formulação do problema clássico de Markowitz, em que 

min
𝒘
𝜎2(𝒘) = 𝒘′𝝈𝒘 

𝑠. 𝑎.  𝒘′𝒓 ≥ 𝑟𝑡𝑚𝑖𝑛 

𝑨𝒘 ≤ 𝒃, 

pode-se observar que no caso particular de limitação das restrições a uma única 

igualdade, ou seja, 

𝑠𝑒 𝑨𝒘 ≤ 𝒃 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒 𝑎 𝑨𝒆𝒘 = 𝑏𝑒 , 

é possível transformar o problema em um sistema de equações lineares através de 

multiplicadores de Lagrange. 

𝐿 =
1

2
𝒘′𝝈𝒘 − 𝜆(𝒘′𝒓 − 𝑟𝑡𝑚𝑖𝑛) − 𝜇(𝑨𝒆𝒘− 𝑏𝑒) 

Onde, 

- 𝑨𝒆𝜖ℝ
𝑁 e 𝑏𝑒𝝐ℝ

 representam a restrição de igualdade, tipicamente 𝑨𝒆 = [1 … 1] e 

𝑏𝑒 = 1; 

-  𝜆 e 𝜇 são escalares que se tornam incógnitas no sistema.  

Considerando, então, 
𝜕𝐿

𝜕𝑤𝑖
= 0 para cada uma das estratégias, o problema pode ser 

resolvido para o seguinte sistema linear. 

{

𝒘′𝝈 − 2𝜆𝒓 − 2𝜇 = 0
𝒘′𝒓 = 𝑟𝑡𝑚𝑖𝑛
𝑨𝒆𝒘 = 𝑏𝑒

 

 

B.7 BREVE DESCRIÇÃO DAS CLASSES DE ATIVOS CONSIDERADAS PELO 

ENDOWMENT DE YALE E NÃO ABORDADAS NO TEXTO 

 

Dentre as classes de ativos consideradas pelo endowment de Yale e não consideradas 

neste trabalho de formatura estão leveraged buyouts (LBO), recursos naturais e venture capital. 

No caso de leveraged buyouts, trata-se de uma transação financeira que inclui crédito e ação, 

de forma que uma compra de crédito financia a aquisição do controle acionário de uma empresa. 

No caso de recursos naturais, trata-se do investimento em setores de petróleo e gás, agricultura 

e negócios florestais. No caso de venture capital, o investimento é análogo à compra de ações 

de empresas privadas, mas em estágios iniciais do desenvolvimento da empresa.  
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APÊNDICE C 

 

Neste capítulo são expostos gráficos complementares aos apresentados nas seções 

principais. 

 

C.1 VALIDAÇÃO MODELOS MARKOWITZ 

 

Tabela 7 Verificação dos modelos de Markowitz 
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Fonte: Elaborado pela autora 
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C.2 ALOCAÇÃO DOS PORTFÓLIOS DE ENDOWMENTS 

 

Alocação média dos cinco maiores endowments de instituições de ensino dos EUA, que 

inclui Harvard, Yale, University of Texas, Princeton e Stanford. 

 

Gráfico 32 Alocações entre classes de ativos dos 5 maiores endowments dos EUA 

 

Fonte: Elaborado pela autora a partir de dados do terminal Bloomberg 
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