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RESUMO

As decisoes de alocacao de recursos de longo prazo tém relagdo importante com a eficiéncia
econdmica, de forma que, pelo processo de selecdo de projetos a serem financiados, determinadas
iniciativas podem ser incentivadas ou desencorajadas. A fonte destes recursos pode ser, por
exemplo, familias, fundos de pensdo, fundos soberanos e endowments de instituicdes sem fins
lucrativos. Desta forma, o problema abordado refere-se ao estudo de métodos de otimizacdo da
construgdo de portfolios entre diferentes classes de ativos. As abordagens consideradas foram o
modelo de Markowitz, 0 modelo de Michaud, um modelo de otimizacdo robusta, 0 modelo de
Rockafellar e Uryasev e um modelo de maximizacdo da taxa de retorno. Cada um deles foi
estudado, adaptado e implementado com o auxilio de programas de simulacdo computacional
(Scilab). Os resultados sdao comparados em termos da relacdo entre risco e retorno e em termos de
compatibilidade dos portfélios sugeridos com alocacdes reais de instituicBes financeiras. Por fim,
concluiu-se que o resultado mais robusto em relacéo a variacdo de parametros iniciais e com maior
aderéncia a situacgdes reais de aplicacdo foi o modelo de Michaud.

Palavras-chave: otimizacdo de portfdlio, teoria de portfolio, classes de ativos,

otimizag&o robusta, processos estocasticos.






ABSTRACT

There is an important correlation between decisions on long-term resource allocation
and economic efficiency. By selecting projects to be financed, it’s possible to encourage or not
certain initiative. Resources can come from families, pension funds, souverain funds and
endowments from non-profit institutions. This study aims to compare methods to build an
optimum portfolio among different asset classes. Different models were used to approach the
problem, including Markowitz model, Michaud model, a model using robust optimization,
Rockafellar e Uryasev model and a model to maximize return. Each one of them was studied,
adapted and implemented using computer simulation software (Scilab). The results were
evaluated in terms of risk-return relation and similarity to real financial institution portfolios. It
was found that Michaud model had the most robust results given the uncertainty asset classes
long-term return.

Keywords: portfolio optimization, portfolio theory, asset classes, robust optimization,

stochastic processes.
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1 INTRODUCAO

Problemas relacionados a decisdes de alocacéo de recursos estdo presentes em diversas
areas da engenharia, com ampla aplicacdo em otimizacdo de investimentos de empresas,
governos e familias. Os recursos para investimentos em uma economia séo limitados, de forma
que é necessario haver uma selecdo dentre os projetos a fim de delimitar aqueles que
efetivamente recebem financiamento (Souza, 1996). Assim, a maneira com que essa selecéo é
feita tem fundamental importancia na eficiéncia da economia, determinando as atividades a
serem prioritariamente desenvolvidas.

Os recursos para estes investimentos sdo muitas vezes provenientes de instituicdes que
agrupam e gerem recursos de diferentes agentes. Uma forma de quantificar uma parcela deste
mercado € através da base de investidores de fundos. Conforme visto no Grafico 1, fundos de
investimentos nos EUA tém fundagdes, endowments e fundos de penséo entre seus principais
tipos de clientes. S&o aqui brevemente descritos os fundos de pensdo, fundos soberanos,
endowments e gestores de recursos de familias:

(a) Fundos de pensédo sdo criados por trabalhadores de grandes empresas com o foco na
otimizacdo de gestdo de recursos para a aposentadoria dos contribuintes. Este é o caso, por
exemplo, do Previ, formado pelos trabalhadores do Banco do Brasil, ou do Petros, formado
pelos trabalhadores da Petrobras.

(b) Outra importante instituicdo de alocacdo de recursos sdo os fundos soberanos, que
sdo instrumentos financeiros adotados pelo governo de alguns paises para a administracdo de
recursos provenientes tipicamente da venda de minérios e petréleo. Um dos mais relevantes €
o da Noruega, com mais de 1 trilhdo de dolares sob gestdo. O Brasil havia criado um fundo
semelhante em 2008, com o objetivo de suavizar o impacto de possiveis crises econémicas
futuras. No entanto, em 2018 foi assinada uma medida proviséria pela extincdo do Fundo
Soberano no Brasil (FSB) e uso dos recursos para equilibrio das contas publicas.

(c) A alocacdo por endowments também é uma aplicagdo bastante relevante.
Endowments sdo tipos de fundos patrimoniais, geralmente associados a entidades sem fins
lucrativos, cujo objetivo é alocar recursos de forma eficiente para que seu retorno possa
sustentar o funcionamento da instituicdo, no limite, até a perpetuidade. Este modelo é bastante
utilizado por institui¢des de ensino principalmente nos EUA.

(d) As gestoras de familias sdo estruturas montadas para administrar recursos de um
namero pequeno de familias abastadas, com o objetivo de criar uma carteira personalizada de

acordo com as necessidades individuais. Este trabalho de formatura foi desenvolvido junto a
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um programa de estagio de um fundo de investimentos com esta estrutura, que tinha como
objetivo principal ajudar familias brasileiras a alocar recursos em gestores no exterior com uma

visdo prioritaria de longo prazo.

Gréfico 1 Base de investidores de fundos nos EUA.

Proporcdo de investidores em fundos nos EUA

2% 2% rl%

= FundacgGes

= Endowments

= Fundos de pensdo privados
Fundos multimercados

= Fundos de pensdo publicos

= Gestores patrimoniais

= Gestores de familias

m Seguradoras

= Gestores de ativos

= Qutros

Fonte: Adaptado de Preqin Hedge Fund (2004)

Portanto, a otimizacdo da alocacdo de recursos € importante para a eficiéncia da
economia no geral, de forma a priorizar melhores projetos. Além disso, algumas instituicGes
aqui exemplificadas também se beneficiam, como é o caso de fundos de pensdo para
trabalhadores de grandes instituicbes, fundos soberanos para administracdo de recursos

governamentais, e fundos de endowment para financiamento de institui¢des de ensino.

1.1 OBJETIVO

Este trabalho tem por objetivo aplicar ferramental matematico e de pesquisa operacional
para a analise de modelos aplicados a otimizacdo da alocacao de recursos.

Tradicionalmente a alocacdo é feita de maneira empirica, de forma que as informacdes
sobre as perspectivas de comportamento de mercado definem a distribuicdes de recursos entre
diferentes investimentos. O problema é que frequentemente essas visdes alcangcam apenas
perspectivas de curto e médio prazo, resultando em alocacdes que podem ser bastante

ineficientes sob a perspectiva de longo prazo.
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A abordagem classica para o problema é a aplicacdo do modelo de Markowitz. Sua ideia
consiste em considerar ndo apenas as caracteristicas individuais de cada investimento, mas a
relacdo entre eles para a avaliacdo de um conjunto de alocacgoes.

No entanto, este modelo ja bastante consolidada na literatura apresenta aplicacéo
bastante limitada na realidade, uma vez que o comportamento dos resultados se afasta de
requisitos necessarios na gestdo de um portfolio de investimentos.

Desta forma, sdo analisados e adaptados alguns modelos alternativos propostos na
literatura com o objetivo de identificar limitaces e dominios de aplicacdo, auxiliando na
selecdo das abordagens consideradas compativeis com os portfélios de investimento de longo

prazo.

1.2 ESTRUTURA DO TRABALHO

A estrutura deste trabalho segue uma sequéncia em que primeiro sdo definidos alguns
conceitos basicos, para que posteriormente possam ser desenvolvidas os modelos e suas
respectivas resolucGes. Por fim, os resultados sdo avaliados através de uma comparagdo de
desempenho e do confronto com alocacGes reais. Desta forma, pretende-se delimitar os
dominios de aplicacdo de cada uma das abordagens. O trabalho se divide em capitulos, a saber:

Capitulo 1: introducdo do trabalho de formatura e apresentacéo dos seus objetivos e suas
motivacdes.

Capitulo 2: exposicdo de alguns conceitos basicos de fundamentacao tedrica, incluindo
métricas de caracterizacdo dos investimentos e do comportamento resultante de um conjunto
de ativos.

Capitulo 3: exposicdo de possiveis abordagens com aplicacdo de técnicas de otimizacao
de pesquisa operacional para a solu¢do do problema. Critérios de amostragem também sdo
definidos para a obtencdo de um conjunto de dados a ser utilizado no calculo dos parametros
dos modelos. Ao final deste capitulo é desenvolvida a estrutura logica das simulacGes
computacionais que auxiliam na resolucéo.

Capitulo 4: comparagdo dos resultados dos modelos, envolvendo verificagdo e analise

do desempenho das simulagdes e confronto com portfolios reais.
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2 FUNDAMENTAGCAO TEORICA

Neste capitulo é desenvolvido o embasamento teorico a ser utilizado posteriormente
para a definicdo do problema de otimizacdo de alocacdo de recursos em horizontes de longo

prazo.

2.1 REVISAO BIBLIOGRAFICA

O artigo de Markowitz (1952) foi pioneiro na proposic¢do de uma nova abordagem para
a alocacéo eficiente de recursos considerando um conjunto de investimentos. Sharpe (1964)
também contribuiu para esta corrente de pensamento. Ambos tinham como ideia principal a
utilizacdo de métricas que possibilitassem a selecdo de investimentos com base em critérios
objetivos. Para isso utilizou-se a expectativa de retorno financeiro e risco associado a alocacéo,
medidos através da média e da variancia do conjunto historico de precos. Estes trabalhos foram
revisados por outros autores de forma que novas abordagens foram propostas na tentativa de
ampliar o conjunto de aplicacdes possiveis. Alguns dos principais questionamentos foram sobre
a definicdo de risco utilizada e sobre a consideracgdo de risco e retorno deterministicos para cada
investimento.

Roman e Mitra (2009) chamam estes desenvolvimentos tradicionais de Teorias
Modernas do Portf6lio. Posteriormente, com o desenvolvimento da capacidade de
processamento computacional, novas abordagens, chamadas pelos autores de P6s-Modernas,
foram propostas.

No contexto de questionamento da utilizacdo da métrica de risco, a principal alternativa
foi o modelo utilizado por Rockafellar e Uryasev (2000). A ideia é que ndo sejam consideradas
dispersdes de distribuicdo de retorno, mas a minimizacdo da média de perdas acima de um
determinado limite. A principal vantagem deste método esta na possibilidade de aplicacdo em
distribuicGes assimétricas, em que apesar da chance de perda ser pequena ela representa um
valor significativo.

Além disso, no contexto de consideracdo de incerteza nos parametros de simulagéo, séo
observadas na literatura duas principais alternativas. Uma delas utiliza matematica robusta,
como descrito por Fabozzi (2007) e por Costa e Paiva (2002), adaptando o meétodo tradicional
de selecdo de alocacOes por Markowitz. Outra abordagem é a estocastica, como a mostrada por
Michaud (1998), cujo objetivo é estudar a sensibilidade dos resultados de um conjunto de

simulacdes de Markowitz a variagdes nos parametros.
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O modelo de Black e Litterman (1992) pretende conciliar a métrica de risco histdrico a
visdo dos gestores sobre riscos intrinsecos de investimentos. Esta abordagem se restringe ao
estudo de um Unico ativo e ndo do comportamento resultante de um conjunto.

Por fim se destacam as abordagens de GARCH para determinacdo dos parametros de
simulacdo, como as utilizadas por Ricetti (2013) e Jondeau (2006). Com isso é possivel

considerar conjuntos de retornos que se afastam de distribui¢cdes normais multivariadas.
2.2 CONCEITOS BASICOS DE COMPOSICAO DE PORTFOLIO

Os fundamentos tedricos para a caracterizagdo de um portfolio incluem métricas
individuais e métricas relacionadas ao conjunto dos investimentos. Desta forma, nesta secéo
sdo destacados os principais conceitos utilizados na descricdo do problema e das solucdes

abordadas.

2.2.1 Taxa de retorno de um investimento

O retorno de um investimento se caracteriza pelo montante resultado da aplicagdo de
determinado recurso durante certo intervalo de tempo. Se uma aplicacdo inicial de um valor
monetario Vo por um intervalo de tempo T resulta, ao final deste intervalo, em um valor Vo +
m, tém-se que o retorno do investimento no intervalo T é m. No entanto, esta definigdo dificulta
a comparacdo entre possiveis alocacdes com diferencas no montante inicial (Vo) ou no tempo
de investimento (7). Desta maneira, se define a taxa de retorno (r), que independe do montante
inicial ou do tempo de investimento.

Definicdo 1: a taxa de retorno (r) é a porcentagem de incremento de valor obtida em

relacdo ao valor inicial de um investimento, considerando um intervalo de tempo fixo.

1/T

Vo+m Vfl/T
- () - ()
Vo Vo

Onde,

- r € a taxa de retorno da alocacéo;

- Vo € o valor monetario inicial de alocacéo;

- Vf é o valor monetério final de alocacéo;

- m € 0 incremento monetario obtido em virtude da alocacdo;

- T é o intervalo de tempo em que Vo ficou alocado medido na unidade de tempo fixa

adotada.
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A definicdo de retorno linear aqui adotada é uma simplificagdo do modelo logaritmico.

2.2.2 Métricas de risco de um investimento

O risco no ambito de financas pode ser definido em termos da variabilidade dos retornos
observados em um investimento em relacdo a expectativa do investidor (Damodaran, 2008).
Tal analise pode ser feita considerando as caracteristicas intrinsecas de cada alocacdo, como
fatores operacionais, de crédito, de liquidez, de mercado ou de legislacdo. Pode-se também
medir o risco de um determinado investimento atraves do estudo de suas taxas de retorno
historicas. Este texto se debruca apenas sobre esta ultima métrica.

Considerando, pois, apenas métricas que utilizam o conjunto historico de taxas de
retorno, ainda ha formas diferentes de medir o risco de um investimento. Artzer (1999)
estabelece principios importantes para analise de estimadores de risco, relacionados a sua
coeréncia (vide Apéndice B). Desta forma, o autor define risco como uma fungéo que respeita
as seguintes propriedades.

Sendo,

- f(x) afuncéo risco de um certo investimento;

- r(x) a funcdo retorno de um certo investimento;

- A um certo investimento;

- B um outro investimento diferente de A4;

- V, valor inicial alocado em A4;

- Vg valor inicial alocado em B;

- 1 um escalar,

as seguintes propriedades se verificam para estimadores de risco coerentes.

(1) Subaditividade: a diversificacao do portfdlio reduz seu risco.

fVa, V) < f(Va) + f(Vp)

(2) Monotonicidade: se os ganhos para um investimento A forem maiores que 0s ganhos
para um investimento B para todos 0s cenarios possiveis entdo o risco de A € maior que o risco
de B.

r(Vy) <7r(Vg) = f(Va) < f(Vp)
(3) Homogeneidade de grau 1: o aumento da propor¢do de alocagdo em um certo

investimento eleva seu risco na mesma propor¢ao.

f(uVy) = uf(Vy)
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(4) Invariancia por translacdo: o aumento da proporcdo de alocagdo em um certo

investimento eleva seu risco na mesma quantidade
fw+V) =pu+ V)

Definidas as caracteristicas para uma métrica coerente de risco, sdo, entdo, descritos trés
estimadores que utilizam um conjunto de taxas de retorno historicas: variancia (a), Var (b) e
CVar (c).

(@) O estimador tradicionalmente empregado para quantificar o risco de um
investimento € a variancia de um conjunto histérico de retornos, chamado tipicamente de
volatilidade. Considerando a aproximacdo do conjunto histérico de taxas de retorno por uma
distribuicdo normal, pode-se calcular a variancia esperada para o portfdlio (Luenberger,1997).

U, = ()
Em que:
- 1, € estimador de risco a partir da variancia de taxas de retorno historicas;
- 02 (x) é a variancia de x.

No entanto, com o avan¢o dos trabalhos nesta &rea, houve questionamento quanto a
adocdo desta métrica de risco. Segundo Wipplinger (2007), tal métrica considera a variacdo da
taxa de retorno ndo apenas abaixo do valor esperado, mas também acima, penalizando ganhos
superiores ao valor esperado. Desta forma, considera-se como risco ganhos acima da média
historica, o que tipicamente é vantajoso em uma alocacao. Ainda segundo o autor, tal métrica
suaviza o0 impacto da magnitude da cauda da distribuicdo, o que também prejudica a
representacdo do risco do investimento.

Compare, por exemplo, as duas distribuicdes de probabilidades dos retornos mostradas
no Gréfico 2. Ambas possuem a mesma variancia, e, portanto, 0 mesmo risco através da métrica
de volatilidade. No entanto, a curva assimétrica negativa poderia ser preterida pelo agente

alocador, em funcdo da limitacao de ganhos e da maior dispersédo de perdas abaixo da média.
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Gréfico 2 Curvas de distribuicdo de probabilidade assimétricas

——/

Distribuicdo assimétrica negativa Distribuicdo assimétrica positiva

Fonte: Elaborado pela autora

(b) Segundo Artzner (1999) o Valor em Risco, conhecido como Var em funcdo da
nomenclatura em lingua inglesa (Value at Risk), surgiu como alternativa. Este estimador
consiste na identificacdo da minima taxa de retorno (perda méaxima p) da distribuicdo de
probabilidade dos retornos considerando um certo nivel de confianga (1 — ), conforme

representado no Gréfico 3 e exibido na formulagao a seguir.
=  gor
fr)=p

Varg = min{r | 7(r) = 5}

Onde,

- r € 0 retorno de um investimento;

- g(r) é adistribuigdo de probabilidade de taxas de retorno de um dado investimento;

- f(r) éadistribuicdo de probabilidade de taxas de retorno do investimento considerado;

- 7(r) é a distribuicdo de probabilidade acumulada das taxas de retorno para um dado
investimento;

- B é o complementar do nivel de confianca, representando a probabilidade de taxa de

retorno menor que a perda maxima.
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Gréfico 3 Representacdo do valor em risco
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Fonte: Elaborado pela autora

No entanto, o Var é um estimador que ndo satisfaz as condicGes de coeréncia
supracitadas. Além disso, ha diversas criticas quanto a limitacdes de estimativa de tamanho de
perda. E possivel, por exemplo, que haja um cenario de perda bastante consideravel, mas com
uma baixa probabilidade, o que pode ter consequéncias graves para expectativa de taxa de
retorno do investimento (PFlug, 2000).

(c) Desta forma, Rockafellar et al. (2000) utilizou outro estimador de risco, o Valor em
Risco Condicional, conhecido como CVar em funcdo da nomenclatura em lingua inglesa
(Conditional Value at Risk). Trata-se da média dos valores da distribuicdo de probabilidade
considerando apenas taxas de retorno abaixo do valor em risco para um dado £, que pode ser

formulado da seguinte maneira.

1
k=5 | reewa
fr=p(B
Onde,

- Iz € 0 Valor Condicional em Risco para um dado S.
Desta forma, foram exibidas diferentes formas de medicdo de risco de um unico ativo.
No entanto, para o estudo pretendido é necessario descrever nas subsecOes seguintes o

comportamento resultante ndo de apenas um, mas de um conjunto de investimentos

simultaneos.
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2.2.3 Modelos de composicdo dos portfélios de investimento

Dado um valor monetéario inicial disponivel para investimento (Mo), pode-se decidir
pela sua alocacdo entre diferentes ativos, dentro de um conjunto de N ativos. Os valores
alocados em cada um desses ativos (M;, M,, Ms, ..., My) formam um portfélio. Dessa forma, a
caracterizagdo da composicao deste portfdlio pode ser feita através da razdo entre uma alocagéo
especifica (M;) e valor monetéario total alocado (Mo).

Definicdo 2: dados N investimentos, caracteriza-se a composic¢ao de um portfolio pelo
vetor weRY tal que cada um de seus elementos representa a proporgéo do valor monetario de

um investimento em relacdo ao total do portfdlio.
w; =— parai=12,..,N

Onde,

- w; € a proporcao da alocacgdo na estratégia i em relacdo ao valor total do portfélio;

- M; é o valor monetario alocado na estratégia i;

- M, é o valor monetario total do portfdlio;

- N é o nimero de ativos que constituem o portfélio.

Cada ativo possui caracteristicas diferentes e respostas distintas a eventos e condi¢cdes
de mercado. Desta forma, através da combinacao destes ativos, busca-se construir uma carteira
cujo comportamento se adeque aos interesses e necessidades do investidor. Ou seja, além da
consideracdo do comportamento das estratégias individualmente, considera-se o efeito da sua
combinacdo em um portfélio.

Um portfélio pode ter alocacBes negativas (w; < 0), 0 que resulta em uma taxa de
retorno oposta ao observado na alocacgdo positiva. Uma das maneiras de se fazer isso através do
mercado de capitais é pela venda de um ativo alugado seguida de posterior recompra.

O somatdrio da proporcdo de todas as alocacGes é conhecido como Exposicéo Liquida,
gue constitui uma métrica que representa a porcentagem do montante total do portfélio que esta
diretamente relacionado com o mercado. Ja o somatério do valor absoluto das propor¢des de
todas as alocacGes € chamado de Exposicdo Bruta, ou seja, a proporcao do valor do portfdlio

que efetivamente esta alocado em alguma estratégia (Capelletto, 2007).

N N
w =Y e
i=1 i=1

Onde,
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- EL é a exposicdo liquida;

- EB é a exposicdo bruta.

2.2.4 Métricas de risco e retorno para um portfélio

Nas subsecdes anteriores foram definidas métricas de risco e taxa de retorno para um
ativo. Nesta subsecéo, pretende-se expandir tais definicdes para o0 comportamento resultante de
um portfélio de investimentos.

Considerando um portfdlio, a taxa de retorno resultante é obtida pela média ponderada
das taxas de retorno de cada uma das alocacdes, conforme descrito pela formulagéo a seguir.

r, =wr’

Onde,

- r,€ R € a taxa de retorno resultante do portfolio;

-w e RN é o vetor com as proporcdes de cada alocacéo;

-r € RN é 0 vetor com as taxas de retorno para cada alocagao.

No entanto, no caso do risco resultante de um portfélio, ndo é suficiente a ponderacéo
dos valores individuais para cada ativo. E necessario que se considere a dependéncia entre os
conjuntos de taxa de retorno, o que pode ser feito através da correlagéo.

Desta forma, é importante verificar qual a relacdo esperada entre as taxas de retorno de
cada um deles. Tipicamente, a métrica utilizada é o coeficiente de correlacdo linear, que mede
o0 grau de relacionamento linear entre dados emparelhados de uma amostra.

Onde,

- pij € coeficiente de correlacdo linear entre as taxas de retorno dos investimentos i e j;

- 0;j € a covariancia entre as taxas de retorno dos investimentos i e j.

Considere, por exemplo, o caso hipotético de um portfolio que apresente investimentos
em refinarias de petréleo e companhias aéreas. Com a elevacdo do preco do petrdleo, ha
elevacdo da taxa de retorno das refinarias e reducdo da taxa de retorno das companhias aéreas.
Neste caso, a correlacdo entre os dois ativos € negativa, de forma que a alocagcdo em conjunto
tende a reduzir os riscos em relacdo as alocacOes individuais. Desta forma, uma métrica
importante € a correlagdo entre a taxa de retorno de refinarias e companhias aéreas, que indica
uma proporcdo de alocacdo que pode reduzir a interferéncia do preco do petroleo no
comportamento portfolio. Através do estudo de relagbes como estas, gestores de portfolio
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conseguem se aproveitar das diferengas de comportamento dos ativos e reduzir o risco de um
portfélio.

Ressalta-se, no entanto, que o coeficiente de correlacéo linear € uma métrica aproximada
que nem sempre representa de forma aderente a relacdo entre taxas de retorno de dois
investimentos. Um exemplo é o caso de ac¢Ges e crédito, em que historicamente ha momentos
de alta correlacdo positiva e outros de correlagdo negativa. Esta diferenga de comportamento
pode ser explicada, em parte, pelo maior impacto da taxa de juros nos ativos de crédito, o que
€ menos evidente no caso de acdes. No Grafico 4 é mostrada a correlagédo de taxas de retorno
diarias para agOes e crédito nos EUA, considerando intervalos de 60 e 120 dias, tal que
intervalos consecutivos divergem entre si de um dia. Desta forma, a utilizacdo de correlacéo
linear para descrever a relacdo entre ativos em casos como estes pode ser questionada.

No caso de as distribui¢fes estudadas se afastarem do modelo de correlacdo linear, ha
varias abordagens alternativas. Entre elas Embrechts (2001) recomenda a utilizagdo da Funcao
de Copula para a representacdo de dependéncias mais gerais, ndo necessariamente lineares.

Gréfico 4 Correlacéo entre acdes (S&P500) e crédito (S&P500 HY Corp Bond)

Correlacdo histdrica entre taxas de retorno didrias de crédito e a¢des
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Fonte: Elaborado pela autora utilizando dados do terminal Bloomberg

Desta forma, esta relacdo entre os ativos pode ser usada para o céalculo do estimador de
risco resultante do portfélio. Assim, as mesmas métricas descritas anteriormente para ativos
individuais sdo agora retomadas para caracterizar o portfélio.

Definigdo 3: a variancia de um conjunto historico de taxas de retorno resultantes de um

portfdlio da-se o nome de variancia do portfolio.
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02 =0%(r,) = wow

Onde,
- rp € a taxa de retorno resultante do portfolio;
- 0, € 0 desvio padréo do portfdlio;

-0 ¢ RY x RN é a matriz de covariancia, formada pela covariancia entre os ativos, tal

0117 *° O1n
g = H ‘o . .
On1  *° OpnN

Definicéo 4: o Valor em Risco de um portfolio consiste na minima taxa de retorno

que:

(perda maxima p) da distribuicdo de probabilidade resultante de um conjunto de ativos dado

um certo nivel de confianca (1 — ).

t(w,1n,) = g(rp)dr,
f(w,rp)sp

Varg(w) = min{r, | 7(w,7,) = B}

Onde,

- 1, € a taxa de retorno resultante do portfolio;

- (1) € adistribuicédo de probabilidade de taxas de retorno de um dado portfolio w;,

- f(w,1,) é adistribuicdo de probabilidade de taxas de retorno em fungéo da alocagao;

- T(w,1,) € a distribuicdo de probabilidade acumulada das taxas de retorno para um
dado portfélio w;

- B é o complementar do nivel de confianca, representando a probabilidade de taxa de
retorno menor que a perda maxima;

- Varg(w) € o Valor em Risco para um nivel de confianga (1 — ).

Defini¢do 5: Valor em Risco Condicional de um portfolio é a média dos valores da
distribuicdo de probabilidade das taxas de retorno resultantes do portfélio que se localizam

abaixo do valor de risco para um dado 8.

1
CVarg(w) = ] f f(w, rp)g (rp)drp
f(Wrrp)Sp(W'ﬁ)
Onde,

- CVarg(w) é CVar para um dado § e um portfélio com alocagoes w.
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2.3 AS DECISOES DE INVESTIMENTO

Neste texto, optou-se pela aplicacdo da analise dos portfélios com ativos no mercado de
capitais. Desta forma, nesta se¢do séo definidos alguns parametros bastante utilizados no setor
para a caracterizagdo e agrupamento dos investimentos. Posteriormente sdo mostradas maneiras
de descrever e comparar portfélios em termos de suas caracteristicas de risco e expectativa de

taxa de retorno.

2.3.1 Liquidez de um ativo

A liquidez de um ativo refere-se ao tempo necessario para a movimentagédo de recursos
entre os investimentos diferentes. Esta caracteristica, em muitos casos, depende de regras que
limitam ou dificultam a alocacéo e o resgate de recursos em certos ativos.

Desta forma, investimentos que exigem menor intervalo de tempo séo considerados
mais liquidos. Por outro lado, investimentos que requerem um periodo maior de alocacdo sao
considerados menos liquidos. No limite, investimentos iliquidos sdo aqueles em que ndo €
possivel o resgate da alocacdo antes da finalizagdo do projeto, cujo prazo é geralmente longo.

Nos casos de investimentos iliquidos as regras para devolugdo de recursos sao
consequéncia do periodo de desenvolvimento de certo projeto. Quando se opta por realizar a
alocacdo, normalmente € firmado um compromisso no qual o recurso estara disponivel quando
necessario. Durante este periodo ndo se pode alocar em outros investimentos com muitas
restrices de liquidez sob a pena de restricdo da disponibilidade. Além disso, os projetos, em
geral, requerem recursos gradualmente durante seu desenvolvimento, de forma que a
disponibilidade deve seguir esta demanda. Isto é, a chamada de capital, nome dado a esta
demanda de recursos, acompanha as necessidades do projeto.

A devolucdo de recursos no caso de investimentos iliquidos também segue o0 andamento
do projeto. Desta forma, ndo é possivel realizar resgates conforme desejado, mas apenas
conforme ocorre a remuneragdo do projeto.

Nos casos de investimentos liquidos, a estratégia também pode demandar certo tempo
para o desenvolvimento, de forma que podem ser definidas regras para a alocagéo e o resgate
de recursos. Quando se decide pelo investimento, primeiramente é feito um estudo para
captacdo e avaliacdo de oportunidades. Selecionadas as alternativas, é necessario verificar se
h& possibilidade de alocacdo, uma vez que algumas estratégias ndo podem ser desenvolvidas

com um volume muito grande de recursos. Um exemplo disso € o caso do investimento em
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empresas pequenas, que geralmente tém uma capacidade limitada de absorgéo de recursos
mantendo a taxa de retorno. Dessa forma, pode-se limitar o total de investimento em
determinada estratégia, 0 que comumente prioriza 0s recursos dos agentes que ja tem alocacéo.

Diferentemente dos iliquidos, no caso de investimentos liquidos é possivel realizar o
resgate de recursos, sujeito a algumas restricdes, uma vez que € necessario que haja agentes que
queiram comprar, preferencialmente a um preco favordvel. Pode ser delimitado um limite
minimo de tempo entre a alocacao e o resgate, o que pode ser proibido ou penalizado por uma
taxa. Também é comum a necessidade de aviso de resgate com certa antecedéncia, alem da
devolucao em parcelas distribuidas no tempo. Ademais, hd outros mecanismos que procuram
incentivar a manutencao do investimento. Um exemplo é caso de cobranga proporcional a taxa
de retorno apenas nos casos de aumento do valor do investimento além do maximo histérico
desde o inicio da alocacdo. Dessa forma, quando a estratégia perde valor ndo ha estimulo para

resgate até sua recuperagao.

2.3.2 Duracdo de um ativo

Outro critério utilizado para caracterizar ativos é a sensibilidade a variagdes da taxa de
juros, o que pode ser medido através da duracdo de um investimento, conhecido em lingua
inglesa como duration. Desta forma, alocagdes de duracgdo alta tém alteracdo mais significativa
da taxa de retorno em razdo de mudancas da taxa de juros. Ja ativos que sdo menos afetados
por alteracdes na taxa de juros tém uma duracdo mais baixa.

A duracdo consiste no tempo médio em que o recurso fica alocado. Este tempo, no
entanto, ndo depende apenas do inicio e do final de um contrato de investimento, uma vez que
ha ativos em que ocorre o recebimento de valores monetarios intermediarios antes do final do
contrato. Assim, a duracdo €é utilizada como métrica que pondera o tempo em que o dinheiro
esta investido considerando estes pagamentos intermediarios. A formulagdo utilizada neste
texto é a de Macaulay (Cox, 1979), representada na Figura 1 e em equacéo a seguir.
1(~C iPMT, V;

MD = — : 4 — :
o (i+r)k (@(+r)

~

Onde,
- MD ¢é a duragédo de Macaulay;

- PMT; é o pagamento intermediario que ocorre no instante i contido no intervalo T.
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Figura 1 Fluxo de entrada e saida de valores monetarios no tempo

PMTy
PMT; PMT, PMTy_,

TTT Ve =

0 1 2 T—-1T
Vo

Fonte: Elaborado pela autora

No Grafico 5, foram considerados investimentos com mesmas taxas de retorno, mas
com durac@es diferentes. E possivel observar que sensibilidade destas alocacdes a alteracdes na

taxa de juros depende da duracdo do ativo.

Grafico 5 Sensibilidade a variacéo de taxa de juros. Foram considerados pagamentos constantes e

equidistantes com devolucao do principal ao final do periodo de investimento.

Duragao

Taxa de retorno

Taxa de juros

—@— Periodo maior de investimento Periodo intermediario de investimento

Periodo menor de investimento

Fonte: Elaborado pela autora
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2.3.3 Classes de ativos

Uma das formas de construcdo de um portfolio é o agrupamento de alocacGes com
expectativa de comportamento similar (Focardi, 2001). Dessa forma, ao invés de a decisdo de
alocacgdo ser tomada para cada ativo individualmente, ela é tomada considerando conjuntos com
caracteristicas similares.

Os critérios de agrupamento utilizados neste texto e descritos a seguir sao a expectativa
de risco-retorno, a liquidez, a duracéo, a localizacdo geogréfica, a correlacdo com outras classes
de ativos e o nivel de responsabilizacdo do investidor. Tais critérios sdo posteriormente
aplicados para o mercado de capitais de forma a definir classes de ativos que seréo consideradas
na simulacao.

(@) Um critério de agrupamento tipicamente utilizado é a expectativa de risco-retorno
da alocacdo. Esta expectativa pode ser medida através de notas, chamadas de grau de
investimento, as quais usualmente sdo atribuidas por agéncias especializadas, como Moody’s,
S&P e Fitch.

(b) A liquidez também pode ser utilizada como critério de agrupamento, de forma que
investimentos com maior facilidade de alocacéo ou resgate séo separados daqueles com maior
dificuldade. No limite também s&o considerados investimentos iliquidos, os quais ndo podem
ser resgatados antes do final do projeto.

(c) Pode ser considerada a duracdo do investimento como critério de agrupamento.
Desta forma, alocacGes com maior ou menor sensibilidade a variac@es de taxa de juros podem
ser classificados em classes de ativos distintas.

(d) A localizacdo geografica também interfere no comportamento de um ativo.
Investimentos em mercados emergentes sdo tipicamente sujeitos a fatores de risco diferentes
daqueles presentes em mercados ditos desenvolvidos.

(e) A correlagdo com outras classes de ativos pode também ser utilizada para classificar
investimentos. Um exemplo sdo ativos de crédito, que englobam tanto investimentos altamente
correlacionados com o mercado acionario, como € o caso da emissdo de divida de empresas,
quanto outros bastante descorrelacionados do mercado no geral, como é o caso de crédito para
seguro de vida. Desta forma, é possivel que haja interesse na separacéo destes dois grupos de
ativos.

(f) Por fim, é comum a distin¢do de nivel de responsabilizagdo do investidor, que pode
ser feita através da separacdo de ativos de crédito e agdo. No caso da acdo ha propriedade de

parcela da companhia e, portanto, maior nivel de responsabilizagdo sobre seu desempenho. Ja
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no caso de crédito, trata-se de um empréstimo a companhia, com menos responsabilidades e
maior prioridade no recebimento dos pagamentos.

Além destes critérios utilizados neste texto, também é comum a classificacdo em relacao
a expectativa de comportamento do investimento frente as condicdes de mercado. A
diferenciacdo entre classes de ativos também pode ser feita através da dire¢do e a magnitude da
resposta dos investimentos a mudancas como inflagdo, crescimento do PIB, pre¢o do petroleo,
cambio, entre outros.

Consideradas estas classes de ativos, cabe ressaltar, no entanto, que ha variacdes de
comportamento entre cada um dos ativos que as compdem. Isto é, a consideracdo de um
subconjunto de investimentos dentro de uma classe de ativos pode gerar diferenca de
comportamento no portfdlio, chamada de dispersdo. Desta forma, podem ser identificadas duas
principais fontes de retorno de uma alocacdo: a distribuicdo entre as classes de ativos e a
distribuicdo dentro de cada classe de ativos. A taxa de retorno da média dos elementos que
compde uma classe de ativos, que é normalmente estimada através de indices, atribui-se 0 nome
de beta. J& ao retorno incremental resultante de uma selecdo de investimentos dentro de uma

classe de ativos da-se o nome de alpha.

2.3.4 indice sharpe para ativos de um portfélio

Uma das abordagens mais simples para a sele¢do de investimentos a comporem um
portfélio € a consideracdo de estratégias com melhor relacdo entre risco e retorno, medidos
através do Indice Sharpe. Trata-se da raz&o entre retorno excedente e volatilidade de um ativo

para um determinado periodo (Sharpe, 1994), conforme formulagéo a seguir.

T — 7
s=—

o
Onde,

- IS é o Indice Sharpe;

- r é a taxa de retorno esperada para o investimento;

- 17 € 0 retorno atribuido ao investimento considerado, no limite, livre de risco;

- 0 € 0 desvio padrdo das taxas de retorno historicas do investimento.

A ideia desta abordagem é calcular o indice Sharpe de cada uma das classes de ativos
consideradas. Este resultado, em tese, fornece uma relagéo de risco e retorno dos investimentos,

de maneira que aqueles que apresentam maiores valores de indice Sharpe séo selecionados para
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comporem o portfélio. No exemplo da Grafico 6, as classes de ativos em que recursos seriam

prioritariamente alocados seriam as indicadas pelos niUmeros 4 e 7.

Gréfico 6 Indice Shape de algumas classes de ativos
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Fonte: Elaborado pela autora

No entanto, a utilizacdo de tal critério apresenta limitacbes importantes em aplicacdes
reais. Uma delas é que este método de construcao de portfélio considera implicitamente que as
taxas de retornos das diferentes classes de ativos sdo independentes, ignorando a possivel
correlacdo existente entre elas.

Além disso, a relacdo entre retorno excedente e volatilidade é suposta linear, o pode nao
ser necessariamente verdade. Ao adotar essa simplificagcdo incorre-se no risco de priorizar
inconscientemente classes de ativos com menor ou maior risco.

Dadas estas limitacdes, outro método de avaliacdo de portfélios foi considerado na

subsecéo seguinte.

2.3.5 Fronteira eficiente de alocacdo

Como alternativa a abordagem anterior, portfélios podem ser representados em um
plano formado por nivel de risco na abcissa e taxa de retorno na ordenada. Considere um
conjunto formado por todos os portfolios possiveis compostos por um grupo limitado de ativos
(vide representacdo deste conjunto no plano retorno-risco no Grafico 7). Considere agora um
subconjunto destes portfolios formados por todos aqueles pontos que, para cada nivel de
volatilidade representam a maior taxa de retorno possivel proveniente de combinagfes destes

ativos. A curva formada pela representaco dos portfélios deste subconjunto no plano retorno-
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risco d&-se o nome de fronteira eficiente. Seu conceito j& foi bastante explorado na literatura
por apontar as potencialidades méximas da combinacdo de investimentos dentro de um
portfélio.

O Grafico 7 evidencia que as relacfes de risco retorno 6timas se afastam da hipdtese
linear considerada na adogdo do indice Sharpe. Neste caso, portfélios com maior risco seriam
prejudicados na anélise, ainda que estejam bastante proximos da fronteira eficiente. Dessa
forma, neste texto, optou-se pela utilizacdo da fronteira eficiente como forma de representacédo

das sugest@es de alocacao.

Gréfico 7 Plano de representacao dos portfélios e da fronteira eficiente. Em classes de ativos individuais

sdo mostrados os portfdlios 100% alocados em apenas uma classe de ativos.
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Fonte: Elaborado pela autora

A fronteira eficiente é delimitada inferiormente pelo ponto de minimo risco e
superiormente pelo ponto de maxima taxa de retorno, de forma que os intervalos considerados

estdo contidos em S, conforme descrito a seguir (vide Gréfico 8).

$= {(X' Y)|XE [Opmin

] nYe [Tpmin; rpmax]}

' 0P max
Onde,
- S é uma regido delimitado pelos pontos de minimo risco e maxima taxa de retorno em

gue a fronteira eficiente esta contida;

- (0, ., 7, . ) €0 ponto de minima volatilidade resultante do portfélio;
min min

- (o T ) € 0 ponto de mé&xima taxa de retorno resultante do portfélio.
Pmax’ Pmax
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Gréfico 8 Delimitagdes da Fronteira Eficiente
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Fonte: Elaborado pela autora

A definicdo da fronteira eficiente, no entanto, ainda néo é suficiente para a delimitacao
do portfélio a ser selecionado para determinado agente. Esta curva define apenas um conjunto
de portfélios considerados eficientes, mas ndo a alocagdo especifica a ser utilizada. Desta forma,
na subsecdo seguinte sdo consideradas alternativas para a representar essa disposi¢do do

investidor em alocar recursos em risco.

2.3.6 Risco de alocacdo do investidor

Séo consideradas neste texto trés alternativas para a incorporacdo da disposi¢do a risco
do investidor, sendo elas o nivel de risco maximo (a), o perfil de risco (b) e a funcéo utilidade
(©).

(2) Uma das alternativas € a definicdo um nivel maximo de risco (oy,,,,) para o qual o
agente esta disposto a alocar recursos. Desta forma, o portfolio selecionado é aquele definido
pela intersecgéo entre a fronteira eficiente e a vertical de volatilidade maxima pretendida (vide
Gréfico 9).
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Gréfico 9 Selecao de portfolio baseado em nivel maximo de risco

Fronteira eficiente e portfdlio selecionado com base no nivel
maximo de risco
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Fonte: Elaborado pela autora

(b) Pode-se também utilizar o conceito de perfil de risco para representar a disposicao
do investidor a alocar recursos em risco. Neste caso, ao invés de determinar uma volatilidade
maxima, define-se uma proporcéo entre os niveis de minima e maxima volatilidade da fronteira
eficiente na qual o investidor pretende localizar seu portfolio. Neste texto o conceito é tratado
como a razdo entre o nivel de risco incremental maximo permitido pelo agente e nivel de risco
incremental maximo permitido pelo portfélio (vide Grafico 10).

Outmax —

— 0.
Pmax Pmin

Onde:

- PF ¢é o perfil de risco do investidor;

= Outpg, © 0 valor maximo que o estimador de risco pode alcangar mantendo a
disposicdo de alocacdo de capital do agente.

Considere, por exemplo, que um investidor tem o perfil de risco equivalente a 1/3. 1sso
quer dizer que o portfélio deste agente deve se localizar em um ponto contido na fronteira
eficiente tal que sua volatilidade se distancia da volatilidade minima em 1/3 da diferenca de

entre a abcissa do ponto maximo (apmax) e a abcissa do ponto minimo (apmin) da fronteira.
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Graéfico 10 Selecéo de portfdlio com base em perfil de risco
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Fonte: Elaborado pela autora

(c) No entanto, em aplicacgdes reais, € comum que a disposi¢do do investidor em alocar
recursos em risco seja melhor representada por uma funcéo que leva em conta a expectativa de
taxa de retorno e ndao apenas um nivel ou perfil de risco fixos. Isto é, quanto maior a expectativa
de retorno, maior também é a disposicao a risco. Para isso, pode-se utilizar a Funcdo Utilidade
(Fabozzi, 2007), que determina o nivel maximo de risco com base na taxa de retorno esperada.
Desta forma, a interseccdo entre a fronteira eficiente e a Funcdo Utilidade determina o portfélio
a ser selecionado (vide Grafico 11).

Ainda segundo o autor, no caso de 0s conjuntos de retornos serem aproximados por
distribuicdes normais, a intersec¢do da funcdo utilidade e da fronteira eficiente coincide com o

limite maximo de risco (o, ,,)- Desta forma, se a hipotese de distribuicdo normal das taxas

de retorno das classes de ativos for adotada, o problema se degenera ao caso (a).
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Gréfico 11 Exemplo de funcao utilidade
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Fonte: Elaborado pela autora

2.3.7 Ajustes na alocacdo dos portfolios

Os métodos descritos anteriormente buscam definir uma alocacdo 6tima de recursos
entre classes de ativos a ser mantida por um longo periodo de tempo. No entanto, em aplicacGes
reais de gestores com verdadeira perspectiva de longo prazo ha necessidade de pequenos ajustes
das proporcdes das classes de ativos. Uma das razdes é a necessidade de rebalanceamento do
portfdlio. Apds determinado periodo, em geral anualmente, a alocacao de classes de ativos que
obtiveram maior retorno e naturalmente se tornaram maiores no portfélio é reduzida. J& as que
tiveram pior desempenho tém alocacdo aumentada. A principal justificativa desta abordagem é
proveniente da ideia que existe uma reversdo a média historica da taxa de retorno. Isto é, se um
investimento gerou uma taxa de retorno acima do esperado em relacéo aos outros componentes
do portfélio em certo periodo, seria prudente reduzir a alocacdo pois haveria uma tendéncia de
piora do desempenho no periodo seguinte.

Outra razdo é a incorporacéo da perspectiva qualitativa de médio prazo. E comum que
algumas decisdes de alocacgéo, principalmente de classes de ativos liquidas, sejam influenciadas
por perspectivas de médio prazo. Tais visdes incluem aspectos complexos que dificilmente
seriam abordados de maneira eficiente pelos modelos de longo prazo. Essas decisfes, chamadas

de taticas, s@o geralmente bastante influenciadas por posicionamentos qualitativos, como as
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perspectivas macroeconémicas e a perspectiva de geracdo de alpha em determinada classe de
ativos.

Desta forma, em aplicacdes reais € interessante considerar ndo apenas uma alocacéo
Otima, mas um intervalo otimizado de distribuicdo de recursos, dentro do qual ha certa

mobilidade para absorver as necessidades supracitadas.

2.4 MODELOS DE COMPOSICAO DE PORTFOLIO

Na secdo anterior adotou-se a fronteira eficiente para representacdo do risco de um
investimento. No entanto, ainda ndo foram abordados métodos para o célculo dos portfélios
que a compde. Assim, esta secdo trata de diferentes ferramentas de otimizacdo para a
identificacdo de alocagbes dtimas.

Segundo Costa e Paiva (2002), as abordagens mais comuns sdo (i) a minimizagéo do
estimador de risco dado um limite minimo de taxa de retorno e (ii) a maximizacdo da taxa de

retorno dado um limite maximo de estimador de risco.

i minu (w i max w'r
(i) minu (w) (ii) max

5.a. W'r = rtpn s.a. u(w) = rkyax
Onde,

- w e r foram definidos anteriormente nas subsecdes 2.2.3 e 2.2.1 respectivamente;

- W determina as restricdes lineares de alocacao nas classes de ativos;

- u(w) € uma medida de risco de um portfolio w;

- T'tmin € 0 retorno minimo esperado para o portfélio;

- Tkmax € 0 Valor maximo esperado para a medida de risco u(w).

Considerando estas duas abordagens associadas a diferentes medidas de risco recaimos
em diferentes modelos de otimizacao de alocacdo. Nas subsecdes seguintes trés destes modelos
sdo tratados, a saber: 0 modelo classico de Markowitz, o modelo de minimizacdo do Valor em
Risco Condicional e 0 modelo de maximizacgdo do retorno proposto por Fabozzi (2007) (vide
Tabela 1).
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Tabela 1 Modelos de otimizagado de portfélio abordados neste texto

Meétrica de risco:

Variancia ou Desvio

Meétodo de minimizagéo: 5 CVar
Padréo
(i) a minimizacdo do estimador de o Minimizacdo do
] o Modelo Classico de .
risco dado um limite minimo de ) valor em risco
Markowitz .
taxa de retorno condicional

(if) a maximizagdo da taxa de i
Modelo de Fabozzi

(2007)

retorno dado um limite maximo de

estimador de risco

Fonte: Elaborado pela autora

2.4.1 Minimizacdo da variancia

O modelo classico de Markowitz (1952) busca minimiza o risco, que é mensurado
através da variancia do portfolio, para um dado um limite minimo de taxa de retorno, conforme
representacdo a seguir.

‘rgleivrl} o?(w) = wow
S.a. W'r = rtpin
Em que,

- a?(w) foi definido na subsecéo 2.2.4.

2.4.2 Minimizacdo do Valor Condicional em Risco

A abordagem utilizando o Valor Condicional em Risco busca minimizar o risco, que é
medido através de Cvar, para um dado nivel de confianca e um limite minimo de taxa de retorno

esperado para o portfélio, conforme representacdo a seguir.

. 1
min Cvarg(w) = — J fw,r)g(r)dr
fw,r)sp(w,B)
s.a. w'r = rty,
Em que,

- Cvarg(w) foi definido na subsecéo 2.2.4.
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2.4.3 Maximizacdo da taxa de retorno

O modelo de Fabozzi (2007) procura maximizar a taxa retorno limitando a variabilidade,
medida através do desvio padréo resultante do portfolio. Estd métrica ndao distingue incerteza
em relacdo as expectativas de taxas de retorno do risco associado a cada classe de ativos. A
representacdo desta abordagem é descrita a seguir.

maxr7, (W) =w'r
wEW p( )

s.a. \/(rderi — Ttmin) 0 (T ger; — Ttmin) < k paratodo i

Onde,
- k € um parametro de limitacdo da variabilidade;

- Tder;€ RY ¢ um elemento do retorno amostral;

-0~ 1 éamatriz inversade o .

2.4.4 Incerteza nos parametros

Os modelos abordados baseiam-se em parametros de expectativa de risco, retorno e
correlagdo das diferentes classes de ativos. No entanto, as estimativas destes parametros
frequentemente estdo associadas a incertezas relevantes, uma vez que sdo projecdes do
comportamento de grupos de ativos em longos intervalos de tempo.

Estas incertezas tornam-se mais relevantes dependendo da sensibilidade do modelo as
variacOes dos parametros. Considere, por exemplo, duas simulagdes cuja Unica diferenca é uma
pequena variacdo nos parametros de entrada contida no intervalo de incerteza. Se o portfélio
gerado por uma das simulacdes for considerado significativamente ineficiente frente aos
parametros da outra simulacdo, entdo o modelo € bastante sensivel a incerteza. Esta
caracteristica prejudica sua aplicagdo em casos reais, uma vez que o portfélio apontado como
6timo pode gerar um desempenho bastante fraco dependendo do desvio do comportamento das
classes de ativos em relacdo as estimativas iniciais.

O modelo tradicional de Markowitz pode ser considerado bastante sensivel aos
parametros de entrada. Para ilustrar tal dependéncia foram executadas diferentes simulacdes,
cada uma com parametros de entrada distintos e contidos nas estimativas de incerteza. Dessa
forma, cada uma destas simulagdes gerou um conjunto de portfolios considerados 6timos pelo

modelo de Markowitz. Verificou-se, entdo, o desempenho de cada um destes portfolios em um
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mesmo cenario, cujos pardmetros correspondem as estimativas iniciais. Por fim, estes
resultados foram dispostos no Gréfico 12 juntamente com a fronteira eficiente obtida com os
parametros estimados. Pode-se observar que ha portfdlios significativamente ineficientes

resultantes de pequenos desvios na estimativa dos parametros.

Gréfico 12 Desempenho de portfélios considerados étimos pelo modelo de Markowitz classico para
pequenas variacdes nos parametros de entrada. Os portfdlios considerados representam portfélios

eficientes de Markowitz para pequenas diferencas nos parametros de entrada

Sensibilidade do modelo de Markowitz a variacées dos
parametros de entrada

Taxa de Retorno Esperada

Volatilidade
e Portfélios considerados = Fronteira Eficiente
Fonte: Elaborado pela autora
Desta forma, fica evidente a necessidade de consideracdo de incerteza nos parametros

de entrada dos modelos. O capitulo seguinte aborda algumas alternativas que consideram este

desvio.
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3 OS MODELOS DE INTERESSE

Estabelecida a fundamentacao tedrica, pode-se estudar diferentes modelos propostos na
literatura para a solucéo do problema de otimizacéao de alocacéo de recursos. A fim de analisa-
los, faz-se para cada um uma breve descri¢do, o detalhamento das hipoteses e a indicacdo de

técnicas de resolucao.
3.1 O MODELO DE MARKOWITZ

O primeiro modelo considerado é o classico de Markowitz em que, procura-se
identificar o portfdlio que minimiza o risco, que é medido pela variancia, respeitando um limite
minimo de taxa de retorno. Segue a formulacédo, conforme ja descrito na subsecdo 2.4.1.

‘rgleivrl} o?(w) = wow
S.a. W'r = rtpn

O modelo supbe expectativa de taxas de retorno deterministica para cada classe de
ativos. Como visto anteriormente, ha sensibilidade significativa a pequenas variacbes deste
parametro, de forma que a aplicacdo em casos em que ha incerteza pode ser bastante ineficiente.

Outra hipotese adotada pelo modelo é que a taxa de retorno resultante do portfélio pode
ser adequadamente representada por uma distribuicdo normal multivariada, o que gera
basicamente duas implica¢des. (i) Uma delas é que as classes de ativos individualmente também
tém distribuicdo normal de probabilidade das taxas de retorno, de forma que a curva é simétrica
e a variancia é suficiente para descrever e comparar o risco entre as possiveis alocagdes. (ii) A
outra implicacéo é considerar que a correlacdo entre os conjuntos de taxa de retorno das classes
de ativos é linear e constante, de forma que basta o coeficiente de correlacdo linear para
descrever a relacéo entre elas.

Para a resolucdo do modelo, pode-se observar que a funcdo objetivo é quadratica e as
restricdes sdo lineares. Dessa forma, uma alternativa é a utilizacdo de programacdo linear
quadrética. Para garantir que a solucdo do problema com este método seja de fato 0 minimo
global, pode-se verificar que a funcdo objetivo € convexa (vide Apéndice B.2) e que as
condigdes de KKT se aplicam (vide Apéndice B.3).

H4, ainda uma alternativa de resolucdo para o caso particular de haver apenas restri¢oes

lineares de igualdade. Neste caso, a utilizacdo de multiplicadores de Lagrange transforma o
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problema em um sistema de equacgdes lineares, o que diminui a demanda por capacidade
computacional para os calculos. Tal resolugéo é descrita no Apéndice B.6.
Para o calculo da solucéo foi desenvolvido um modelo de simulacdo que utiliza a funcédo

gpsolve do software Scilab (vide cddigo no Apéndice A).
3.2 0 MODELO DE MICHAUD

Segundo Fabozzi (2007), a resolucdo do modelo de Markowitz se assimila a simulacfes
caoticas, em que pequenas variagdes nos parametros de entrada resultam em grandes variaces
em seus resultados. Considerando a premissa de pardmetros deterministicos para cada
componente do portfélio, tem-se que pequenos erros nas estimativas de taxa de retorno podem
resultar em alocac@es significativamente menos eficientes (conforme ja observado no Gréafico
12). Desta forma, diversos autores apresentaram alternativas para reducédo da sensibilidade do
modelo a variagfes pequenas nos parametros de entrada.

Uma das possibilidades é a utilizacdo do conceito de processos estocasticos, o qual
utiliza variaveis aleatorias que evoluem com um fenémeno ou um sistema ao longo do tempo
(Marchetti, 2010). A ideia do modelo € considerar ndo apenas um vetor de taxas de retorno,
mas um conjunto deles que seja representativo da incerteza das estimativas. Para cada um destes
vetores é calculada uma fronteira eficiente através do modelo classico de Markowitz. Por fim,
os portfélios de todas as fronteiras eficientes sdo agrupados convenientemente com o objetivo
de gerar sugestdes de alocacdo para cada nivel de risco.

Apesar de 0 modelo considerar diferentes cenarios, algumas das hipoteses de Markowitz
continuam sendo adotadas. A distribuicéo de probabilidade das taxas de retorno continua sendo
considerada normal, apesar da possibilidade de mudanca nos parametros de media e desvio-
padrdo entre simulacdes de fronteiras diferentes. Analogamente, a correlacéo entre as classes
de ativos continua sendo considerada linear, mas ndo mais constante, tendo em vista a
possibilidade de variacdo da matriz de correlacdo entre os diferentes cenarios.

Definidas as principais hipoteses adotadas, parte-se para o detalhamento do modelo e
de técnicas de resolucdo. Neste caso, as variaveis aleatdrias do processo estocéstico considerado
sdo os vetores de taxas de retorno das classes de ativos (rggr), que formam o conjunto a seguir.

—_ L. (2 (m)
X = {rder yTaerr s rder}

Em que,
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- X é o conjunto de vetores de taxa de retorno das classes de ativos que constituem as
variaveis aleatdrias do processo estocastico;
- m é 0 nimero de observacdes realizadas;

- rf;z,re]RN € o i-ésimo elemento do conjunto de taxas de retorno X.

Para cada um dos vetores que compdem o conjunto (X) das variaveis aleatorias, é
calculada uma fronteira eficiente através do modelo classico de Markowitz. Desta forma, se
obtém um conjunto de fronteiras eficientes, que sédo resultantes do fenémeno estocéastico (vide

Figura 2).

Figura 2 Algoritmo de simulacéo estocéstica

=i+l |
Calcula
" portfalios da
Inicio s = = Observa rE;Efr .| fronteira
eficiente para

Fimm

Fonte: Elaborado pela autora

Este conjunto de portfélios de diferentes fronteiras pode ser, entdo, agrupado
convenientemente, para que se gere uma sugestdo de alocacdo dependendo da suscetibilidade
do investidor a risco. Ha diferentes critérios para se realizar este agrupamento, desde que se
respeite a propriedade de que todos os portfolios dentro de um grupo possuam a mesma
probabilidade de ocorréncia. Como o conjunto das fronteiras foi gerado aleatoriamente através
de processo estocastico, basta que cada grupo selecione exatamente um portfélio de cada
fronteira eficiente. Neste texto sdo abordadas duas possibilidades, a saber: o perfil de risco (a)
e o nivel de risco (b).

(@) O critério de agrupamento utilizado por Michaud (1998) considera o perfil de risco
do investidor (vide subsecdo 2.3.6). Isto é, o nivel de risco maximo ao qual o investidor se
submete ndo € fixo para todas as fronteiras eficientes geradas, mas depende do intervalo de
volatilidade em que cada fronteira esta contida. Dessa forma, sdo formados grupos com pontos

que possuem as mesmas caracteristicas de perfil de risco (vide Grafico 13).
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Para que dois portfdlios de fronteiras eficientes diferentes (A e B) sejam agrupados no

mesmo perfil de risco, deve-se satisfazer que

x (4) _ 4 x (B) _ (B)
PR = Op Gpmin _ Op Gpmin

A) _ A) B) _ B
apmax( ) Upmin( ) ®) O-pmin( )

Upmax
Onde,

- A e B indicam duas fronteiras eficientes distintas;

- 0p © ¢ a volatilidade de um ponto da fronteira eficiente (-) que apresenta o perfil de

risco PR;

- apmax(') é a volatilidade do ponto de maior taxa de retorno da fronteira eficiente (+);

- apmm(') é a volatilidade do ponto de menor taxa de retorno da fronteira eficiente (-).

Gréfico 13 Perfil de risco do investidor
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Fonte: Elaborado pela autora

(b) Outra possibilidade de agrupamento € através do nivel de risco (vide subsec¢éo 2.3.6).
A ideia é agrupar os portfolios definidos pela interseccdo de cada uma das fronteiras eficientes

com a vertical do nivel de risco maximo pretendido pelo investidor (oy,, ,,) no plano retorno-

risco (vide Gréfico 14).
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Note, no entanto, que nem todas as fronteiras eficientes contém portfolios 6timos para
todos os niveis de risco, como é o caso exemplificado pela fronteira B do Grafico 14. Para
contornar este problema, optou-se pela selecao do ponto de maior nivel de risco possivel, ainda

que ele seja inferior ao pretendido pelo investidor.

Gréfico 14 Agrupamento por nivel de risco. Note que 0 ponto de maximo retorno da fronteira é utilizado

no agrupamento com nivel maximo de risco u,,;.

Fronteira Eficiente
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Taxa de Retorno

(B) o
Upmax utmax

. . . Volatilidade ) o
X Pontos de minimo risco ou maximo retorno Fronteira Eficiente (A)

Fronteira Eficiente (B) Fronteira Eficiente (C)

Fonte: Elaborado pela autora

Essa abordagem parece fazer sentido empiricamente. Considere, por exemplo, um
cenario hipotético em que investimentos de maior risco apresentam uma perspectiva de

desempenho pior, de forma que o nivel de risco maximo pretendido pelo investidor (o, .. )

ndo pode ser otimamente alcancado. Isso ndo necessariamente significa que as outras classes
de ativos estdo com pior desempenho. No entanto, se fosse aplicada a l6gica de perfil de risco,
a volatilidade de seu portfélio deveria ser diminuida proporcionalmente. O que pode implicar
em uma reducéo expressiva do risco do portfolio, com uma resposta mais intensa do que seria
necessario tendo em vista do cenario considerado. Ja se fosse aplicada a I6gica de nivel de risco,

seria selecionado o ponto da fronteira eficiente de maior volatilidade possivel (apmax), sendo

mantida a eficiéncia com o nivel de risco mais préximo possivel do pretendido pelo investidor.
Determinados 0s grupos a serem considerados é possivel estabelecer as sugestdes de

alocagédo para cada perfil ou nivel de risco. Para isso, define-se o portfolio médio de cada
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agrupamento como a média da alocacgdo dos integrantes do grupo em cada classe de ativos,

conforme formulagéo seguinte.

m
w© = %z w;@ para todo G
i=1

Onde,

- G é um dos agrupamentos de portfolios utilizando os critérios de nivel ou perfil de
risco;

-w (©eRN sdo as proporcdes de alocagdo do portfélio médio do grupo G em cada classe
de ativos;

-w;(@eRY sdo as proporcdes da alocacio do i-ésimo portfélio pertencente grupo G;

- m é o numero de portfélios contidos no grupo G, que coincide com o nimero de
observacdes do processo estocastico.

Com estes desenvolvimentos ja é possivel obter uma fronteira formada pelos portfélios
médios. No entanto, Michaud (1998) propde a consideracdo de mais um passo, que é a filtragem
das alocagdes consideradas extremas. Esta filtragem faz sentido empiricamente, uma vez que,
mesmo em condi¢Bes mais adversas de mercado € raro que em investimentos de longo prazo
haja flexibilidade para mudancas muito grandes de alocacdo entre as classes de ativos de um
portfolio.

Para isso, foi definida de uma métrica de distancia de um portfdlio em relagdo a outro,
como mostrado na formulagéo a seguir.

c(6,1) = (wg —wy) a(wg — wy).

Onde,

- 6 e n sdo dois portfolios quaisquer pertencentes ao mesmo grupo;

- ¢(8,n)€R é a distancia entre os portfolios 6 e n;

- w(, € a alocagdo do portfolio (-);

- 0eRN x RN é a matriz de covariancia entre as classes de ativos.

Essa métrica é, entdo, utilizada para medir a distancia dos portfélios de um grupo em
relacdo ao portfolio médio deste grupo. Desta forma, os portfolios mais distantes do médio sao
excluidos do agrupamento e os novos portfolios médios séo calculados a partir dos elementos

restantes.
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3.3 MODELO DE OTIMIZACAO ROBUSTA

Assim como na abordagem da secéo anterior, os modelos de otimizagéo robusta também
procuram reduzir a sensibilidade dos resultados a pequenas variagdes nos parametros de entrada
das simulagcfes. No entanto, ao invés da utilizacdo do conceito de processos estocasticos,
emprega-se a otimizagdo robusta, isto é, desenvolvem-se modelos suficientemente imunes as
incertezas nos dados (Alem e Morabito, 2015).

A abordagem robusta descrita por Costa e Paiva (2000) pretende selecionar portfélios
que minimizem o maximo risco considerando todos os elementos de uma amostra e garantindo
retorno minimo do portfolio sob incerteza. Para isso o modelo considera variabilidade nas taxas
de retorno e as matrizes de covariancia. Diferentemente do modelo descrito na se¢do anterior,
que adota a média das alocacdes eficientes, neste caso o risco do pior caso é minimizado.

Esta abordagem de otimizacao robusta também tem como base o trabalho de Markowitz,
0 que implica na adocdo de hipoteses similares. Desta forma, a distribuicdo de probabilidade de
taxa de retorno resultante de um portfdlio continua sendo suposta normal multivariada, apesar
de serem considerados diferentes parametros de acordo com a varia¢do dos cenarios.

Definidas as principais hipoteses, parte-se para o detalhamento do modelo e de técnicas
de resolucdo. Neste caso, a variabilidade € representada através de dois conjuntos: um de

vetores de taxa de retornos das classes de ativos e outro de matrizes de covariancia.

Ripni ={ruvr2, o, Tm} Din; = {01,03, ..., 04}

Onde,

- R;n; € 0 conjunto de taxas de retorno das classes de ativos inicialmente considerado;

- D;; € 0 conjunto de matrizes de covariancia inicialmente considerado;

- m é o nimero de elementos de R;,,;;

- n € 0 nimero de elementos de D;y,;;

-r; € RN é 0 i-ésimo elemento de R;,;;

-o; € RY x RN é 0 i-ésimo elemento de D;,,;.

Os elementos da amostra séo, entdo, definidos pela combinacéo linear dos elementos de
dos conjuntos iniciais, conforme formulagéo seguinte.

Raer = {Tder|Tder = LiZ1 Ai7i} Daer = {Gder|Oder = XiZ1vi04}

Onde,

- Ry € 0 conjunto de elementos da amostra de taxa de retorno das classes de ativos;
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- T'ger € RY € um elemento do conjunto R4,,;

- A;eR e y;e R sdo valores quaisquer que representam os coeficientes para a
combinacdo linear dos vetores de taxa de retorno inicialmente considerados;

- Dg4er € 0 conjunto de elementos da amostra de matrizes de covariancia;

- 0ger € RY x RM é um elemento do conjunto D,

Formado os conjuntos, os autores propdem o seguinte modelo para a representacéo do
problema de otimizagéo robusta.

min «
weEW,a

w'oDw < a para todo 69 € Dy,
@

der

wrd 4 rr(1—[1 .. 1]w) =7ty paratodor

der € Rder

Onde,
- ae R é a maxima variancia dentre todos os cenarios de retorno e covariancia
considerados;

- r;‘gre RM € 0 i-ésimo elemento da amostra de vetores de taxa de retorno (R e,);

-0 e R¥ x RV éi j-ésimo elemento da amostra de matrizes de covariancia (Dge;);

-17€ R € o retorno atribuido ao investimento considerado, no limite, livre de risco.

A primeira restricdo (w'eWw < a) resulta em uma inequagdo convexa nao-linear. Uma
maneira de contornar esta questao € utilizando a linearizacéo através do complemento de Schur
(vide Apéndice B.5). Dessa forma, a solucdo do problema passa pela resolucdo de uma

otimizacdo com desigualdade matricial linear (da sigla em lingua inglesa LMI).

min «
wew,a
a w’a(i)] -
g , =>0paraj=1,2,..,n
[a(’)w o pard
w' rffir +r(1—-[1 .. 1]w) =271ty parai=1.2,..,m

A resolucdo deste problema de otimizacao linear gera uma sugestdo de alocacdo dada
uma taxa de retorno minima esperada para o portfdlio. Para isso foi utilizada a funcao Imisolver

do software Scilab (vide cddigo no Apéndice A).

3.4 O MODELO DE ROCKAFELLAR E URYASEV

O modelo de Rockafellar e Uryasev (2000) difere dos abordados anteriormente por

considerar o Valor em Risco Condicional do portfélio como métrica de risco e ndo mais a
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variancia. O objetivo ¢ identificar portfolios que resultam no menor CVar possivel, para uma
taxa de retorno minima e um nivel de confianga. Para isso, a variabilidade € considerada através
de uma amostra de taxas de retorno das diferentes classes de ativos. Desta forma, a formulagéo

do modelo é a seguinte (conforme ja visto na subsecéo 2.4.2).

gleimr} Cvar(w) = 1 fw,r)g(r)dr
fw,r)spw,B)
S.a. W'r = rtpin

Neste caso, ndo é necessario que as distribuicGes de probabilidade das taxas de retorno
sejam normais, nem mesmo simétricas, uma vez que as proprias amostras sao utilizadas para
descrever a populacdo. A correlagdo também ndo é suposta linear, mas € subentendida através
dos elementos das amostras. Desta forma, uma das principais hipéteses do modelo, é a
representatividade da amostra considerada, da qual serdo extraidos implicitamente os
parametros de resolucéo.

Consideradas estas premissas, Rockafellar e Uryasev (2000) sugeriram uma resolucao
para o problema de minimizacdo de CVar (vide subsecdo 2.2.4). Primeiramente os autores

notaram que a minimizagéo de

1
CVarg(w) = 3 f f(w, rp)g(rp)drp
f(wrp)sp(w,B)
é analoga a minimizacao da expressao

pwp=ptg [ ) =26,
f(wrp)sp(w,B)
Em que, conforme ja descrito na secdo 2.2.4,
- 1, € a taxa de retorno resultante do portfolio;
- (1) € adistribuicdo de probabilidade de taxas de retorno de um dado portfolio w;
- f(w,7,,) € adistribuicdo de probabilidade de taxas de retorno em fungéo da alocagao;
- B é o complementar do nivel de confianca, representando a probabilidade de taxa de
retorno menor que a perda maxima;
- CVarg(w) € CVar para um dado 5 e um portfolio com alocagdes w.
Posteriormente foi considerada a representacdo da forma discretizada da expressao

Fg(w, p), da seguinte maneira.

J
Fo(w,p) =p+ ]iﬁ;[f(w,ﬂ -
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Onde,

1 — Oset <0,
[£] {tset>0’

- ] € o numero de elementos da amostra resultante da discretizacdo da distribui¢do de
probabilidade.
Pode-se, ainda, transformar o problema em um caso de programagéo linear substituindo
(f(w,r) —p)* por z; e adicionando as seguintes restricdes.
—zi+wr—p<o0
zi=20parai=12,..,]

Por fim, o resultado é a solucdo do seguinte problema de programacéo linear.

J
P 5,
min — Z;
WEW,p p JB t
i=1
s.a. —z;+wr—-p<0
zi=20parai=12,..,]
w'r = rtpin
Portanto, através de uma amostra de vetores de taxas de retornos das classes de ativos é
possivel identificar uma alocacdo que minimiza CVar do portfélio para o nivel de confianca
e uma taxa de retorno maior ou igual a rt,,;,. 1sso foi feito utilizando a fungéo karmarkar do

software de simulag&o Scilab (vide cddigo no Apéndice A).
3.5 MODELO DE MAXIMIZACAO DE RETORNO

O modelo de maximizagao de retorno descrito por Fabozzi (2007) busca maximizar a
taxa de retorno de um portfélio dado um limite maximo de variabilidade, medida através do
desvio-padrdo resultante da alocagdo. Esta abordagem difere das anteriores uma vez que o
retorno ndo € considerado uma restricdo, mas o objetivo da otimizacdo. Segue o modelo
conforme descrito na subsegéo 2.4.3.

max7, (W) =w'r
weEW p( )

s.a. \/(rde,.i — Ttmin) 0 (T ger; — Ttmin) < k paratodo i

Onde,
- k € um parametro de limitacdo da variabilidade;

- Tder;€ RY ¢ um elemento do retorno amostral;
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-0~ é amatriz inversade o .

Para esta abordagem, considera-se que a expectativa de taxa de retorno para cada classe
de ativos € deterministica. O modelo também adota hipoteses de correlacao linear constante
entre as classes de ativos e distribuicdes de probabilidade normal de taxas de retorno.

O modelo sugerido por Fabozzi (2007) pode ser resolvido utilizando um artificio através
de dualidade. O primeiro passo envolve a solucdo do problema original, considerando as
alocacdes do portfolio como fixas e os retornos de cada classe de ativos como variaveis.

min w'r g,
Tder

”0'_0'5 (rder - T)” <k
Onde,

- k € um parametro de limitacdo da variabilidade;

- |67%5 (1 ger — )| equivale a \/(rder — 1) 071 (rger — 1) segundo o autor.

Posteriormente, sugere-se utilizar o problema dual para a otimizagdo sem incerteza nos
parametros. Como a formulacdo anterior € um cone de segunda ordem (SOCP) (Reis, 2013),
obtém-se o seguinte dual.

max —(—u'67%°r) — kv
Wrder

o u+0v=w
lull < v

Onde,
- ueRY e veR sdo parametros do problema dual.
Se u = ¢~ %5w entdo o problema pode ser escrito da seguinte forma.

max w'r — kv

lo%Sw|| < v
Segundo a dualidade, a otimizacdo deste problema seria anadloga a otimizacdo do

problema original, de tal forma que o menor retorno seria dado pela seguinte expressao.
wr—kv=>wr-—kl|low| =wr—kywow

Note que esta expressdo ndo depende do conjunto de retornos sujeitos a aleatoriedade.

Basta, entdo, substituir a funcéo objetivo do problema inicial.
max w'r — k\yw'ow
wew
Obteve-se, assim, uma formulacdo similar ao modelo de Markowitz, com, no entanto,

uma penalizacdo para desvio-padréo, seja ele associado ao risco ou a incerteza dos parametros
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de taxa de retorno. O calculo foi feito utilizando a funcéo optim do software de simulagéo Scilab
(vide codigo no Apéndice A).

3.6 A ABORDAGEM UTILIZADA

Conforme brevemente citado nas sec¢des anteriores, a resolugéo de cada um dos modelos
envolve hipoteses sobre o comportamento dos trés principais parametros: métricas de risco,
retorno e correlagédo. Desta forma, esta secdo se dedica a expor as implicacdes destas premissas

nos resultados obtidos por cada uma das abordagens. O Figura 3 e a Tabela 2 resumem essa

discussao.
Figura 3 Hipoteses adotadas na resolucéo dos modelos
Constante

| Métrica de correlagdo

entre classes de ativos

Consideragdo de
diferentes cenarios
Cvar
—  Métricas de risco Variancia constante
Hipoteses —

Distribuicdes simétricas
Desvio-padrdo

Deterministica

Métrica de incerteza T
— Distribuigdo histérica
nas taxa de retorno

Monte Carlo com
normais multivariadas

Fonte: Elaborado pela autora
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Tabela 2 Hip6teses consideradas pelas diferentes abordagens

Correlacéo Risco Retorno
. . . Deterministico com
Markowitz Linear Variancia constante A
distribuicdo simétrica
. Linear com diferentes A Estocéstico com
Michaud - Incerteza na variancia AR
cenarios distribuicdo simétrica
Otimizacgao Linear com diferentes A Diferentes cenarios com
- Incerteza na variancia R
robusta cenarios distribuicdo simétrica
Rockafellar e -~ - Pode ter distribuicéo
Implicita CVar do portfélio s
Uryasev P P assimetrica
Maximizacéo . . x Deterministico com
Linear Desvio-padrdo constante AR
do retorno distribuicdo simétrica

Fonte: Elaborado pela autora

3.6.1 A abordagem em relacdo ao retorno

Primeiramente € considerada a expectativa de taxa de retorno de longo prazo para cada
uma das classes de ativos. Tanto no modelo classico de Markowitz quanto no modelo de
maximizacao do retorno, € suposto que este parametro é deterministico. Desta forma, em ambos
0S casos, € possivel que pequenos erros nas estimativas possam resultar em sugestfes de
alocacdo bastante ineficientes.

Neste texto foram abordadas duas alternativas para a consideragéo de variabilidade deste
pardmetro no modelo classico de Markowitz: uma delas através de processos estocasticos, no
modelo de Michaud (1998), e a outra através de otimizacao robusta, no modelo de Costa e Paiva
(2000). Em ambos os casos € necessaria a consideracdo de um conjunto de vetores de retorno
como parametros de variabilidade da simulagdo. Em um deles, estes vetores compdem o
conjunto de variaveis aleatérias do processo estocastico (X); em outro, formam o conjunto
inicial de taxas de retorno consideradas para a otimizagéo robusta (R;,;) (vide se¢do 3.2 e 3.3).
Desta forma, os vetores sdo necessarios para a incorporacao de diferentes cenarios a serem
considerados pelos modelos.

Para a geracdo do conjunto de vetores a serem usados nas simulacdes, sdo, neste texto,
consideradas duas possibilidades. Uma delas é a utilizacdo de um conjunto de dados histéricos,
de tal forma que os elementos da amostra sdo as taxas de retorno das classes de ativos
observadas em determinados intervalos de tempo coincidentes. Outra possibilidade € a
aplicacdo de uma simulacdo de Monte Carlo parametrizada a partir das caracteristicas
observadas nas amostras historicas. Neste texto, os parametros utilizados na simulacdo de
Monte Carlo tém como hipdtese a distribuicdo de probabilidade normal multivariada dos

conjuntos historicos de retorno (vide Apéndice B.4).
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Por fim, no caso do modelo de otimizacdo de Rockafellar e Uryasev, também ¢é
considerada variabilidade das taxas de retorno das classes de ativos. De forma anéaloga aos
modelos estocastico e robusto, isto é feito através de conjuntos de vetores que representam
diferentes cenarios. Desta forma, 0 conjunto destes cenarios é utilizado para a construcao da
distribuicdo de probabilidade de retornos resultantes do portfolio e posterior calculo de CVar.
Pode-se também considerar neste caso tanto a utilizacao de amostras histdricas quanto a geracdo
de vetores de retorno através de uma simulacéo de Monte Carlo.

As solucdes aplicadas neste trabalho consideraram a variabilidade nas expectativas de
retorno através de um conjunto de vetores gerados por uma simulagdo de Monte Carlo, que

adotou a hipdtese de distribuicdo normal multivariada (vide Apéndice B.4).

3.6.2 A abordagem em relacdo a métrica de risco

E considerada agora a métrica adotada pelos modelos para representar o risco das classes
de ativos e do portfolio resultante das alocacdes. No caso do modelo classico de Markowitz,
utiliza-se a variancia da distribuicdo de probabilidade das taxas de retorno. Esta hipdtese
considera que as distribuicdes de retorno tanto para classes de ativos quanto para o portfélio
sdo normais, de forma que podem ser completamente definidas e comparadas através da média
e do desvio-padrdo. A adocdo desta premissa também implica que as distribui¢fes de retorno
sdo simétricas, de forma que a limitacdo da probabilidade de perda torna-se analoga a limitagéo
da variancia. Desta forma, se 0 modelo for aplicado a distribuicdes de retorno que se afastam
significativamente da hipdtese de simetria, pode-se incorrer distor¢des da métrica de risco, com
possivel penalizacdo equivocada dos desvios acima da média e reducao do impacto dos desvios
abaixo da média.

A variancia como métrica de risco no modelo de Markowitz é considerada
deterministica e constante para intervalos de longo prazo. Desta forma, caso haja incerteza
consideravel na definicdo dos parametros de variancia de cada classe de ativos, pode-se obter
uma alocacdo bastante ineficiente.

As hipoteses adotadas pelo modelo de maximizacédo do retorno séo analogas as adotadas
pelo modelo de Markowitz, com a Gnica diferenca de que a métrica de risco utilizada é o desvio-
padrdo e ndo a variancia.

Os modelos de Michaud e de otimizacdo robusta também utilizam varidncia como
métrica de risco e mantém a hipdtese de normalidade das distribui¢fes de probabilidade das

taxas de retorno das diferentes classes de ativos. No entanto, para ambas as abordagens é
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possivel considerar incerteza nos parametros de risco. Isso é feito de forma andloga ao descrito
na subsecao anterior para o conjunto de vetores de taxas de retorno, considerando, no entanto,
um conjunto de diferentes cenarios de variancia, expressos através de diferentes matrizes de
covariancia.

O modelo de Rockafellar e Uryasev utiliza o Valor em Risco Condicional como métrica
de risco. Neste caso, as hipdteses sdo menos rigidas, de forma que dado um conjunto
representativo de cenarios de taxa de retorno, ndo é necessario que a distribuicdo de
probabilidade deles seja normal, podendo ser até mesmo assimétrica.

As solucbes aplicadas neste trabalho consideraram apenas variabilidade nas

expectativas de retorno para as classes de ativos e ndo na variancia.

3.6.3 A abordagem em relacdo a correlacdo entre as classes de ativos

A maneira com que a correlagdo entre as classes de ativos é considerada difere entre as
abordagens. Os modelos de Markowitz e de minimizacdo da taxa de retorno consideram a
correlacdo linear e deterministica. Desta forma, a aplicacdo deste modelo para classes de ativos
cuja relacdo entre as taxas de retorno € incerta ou distante de uma reta pode ser questionada.

Os modelos de Michaud e de otimizagéo robusta adotam a correlacdo linear entre as
classes de ativos, mas preveem variabilidade. Isso é feito através da consideracédo de diferentes
cenarios expressos através do conjunto de matrizes de covariancia.

Alternativamente, é possivel utilizar modelos mais complexos que sdo capazes de
descrever um grande leque de outras estruturas de relacdo. Este € o caso, por exemplo, das
Funcdes de Copulas (Embrechts, 2001; Joe (1997); Nelsen (1999)). No entanto, estes conceitos
ndo foram aplicados neste trabalho.

Por fim, no modelo de Rockafellar e Uryasev ndo é necessaria a descrigcdo explicita das
relacOes entre as taxas de retorno das classes de ativos. Desta forma, considerando que a
amostra utilizada é representativa, ndo se delimitam hipéteses de correlacéo.
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4 RESULTADOS OBTIDOS

Neste capitulo sdo definidos os parametros e os métodos de aplicacdo dos modelos em
classes de investimentos tipicamente utilizadas no mercado de capitais. Dessa forma, sao
definidos critérios para a amostragem de taxas de retorno histéricas e para parametros dos
modelos de otimizacao.

A seguir, sdo aplicados meétodos de verificagdo dos modelos, para garantir que a
construcdo foi adequada, e técnicas de validacdo, para realizar a comparacéo entre os resultados
dos modelos (Pace, 2004).

4.1 A DETERMINACAO DOS PARAMETROS
Nesta secdo pretende-se definir os parametros a serem utilizados na aplicagdo dos
modelos. Desta forma, primeiro sdo delimitadas as classes de ativos a serem consideradas,

posteriormente sdo definidos os parametros para coleta de amostra de dados historicos.

4.1.1 A delimitacdo das classes de ativos consideradas

A partir da aplicacdo dos critérios de agrupamento de investimentos com
comportamento similar (vistos anteriormente na subsecdo 2.3.3), foram consideradas nove
classes de ativos. A seguir € feita uma breve descricdo de cada uma delas.

Estratégias de baixa duragdo e com grau de investimento (IGSD) tipicamente funcionam
como substitutos de caixa e evitam que o recurso fique desinvestido. Dessa forma, é esperado
que estas alocagdes sejam bastante liquidas, com baixa duracdo e com risco e taxa de retorno
baixos. Podem ser incluidas nessa classe de ativos dividas de empresas para uso como capital
de giro e dividas de curto prazo do governo estadunidense, por exemplo.

Dividas de empresas com grau de investimento (IG CORP) compreendem alocagdes
gue podem ter uma duragcdo maior, porém com um risco de ndo-pagamento bastante baixo. Sdo
créditos liquidos, com taxa de retorno limitada, emitidos por companhias consideradas solidas
pelo mercado. Tanto nesta classe de ativos quanto na anterior, a dispersao dentro dos grupos
tende a ser baixa.

Dividas de empresas sem grau de investimento (HY CORP) compreendem alocagdes
com certa duracdo e com um risco mais elevado de ndo-pagamento. Eles séo créditos liquidos

emitidos por companhias cuja solidez € questionada pelo mercado, sendo muitas vezes
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considerados papéis especulativos. A expectativa de taxa de retorno tende a ser mais elevada
que no caso de empresas com grau de investimento.

Retorno absoluto (ABS RET) compreende investimentos que tém uma da taxa de
retorno bastante descorrelacionada entre si e de outras classes de ativos, isto €, os fatores que
influenciam seu comportamento tendem a ser especificos e diferentes do restante do mercado
de capitais. Eles podem incluir, por exemplo, instrumentos financeiros alternativos, alocactes
em setores econdémicos especificos e exploracédo de situacdes de assimetria de valor. A relacdo
de risco-retorno e duracdo podem variar bastante entre os tipos de investimento dentro desta
classe de ativos.

Acles publicas de mercados desenvolvidos (EQ DM) incluem papéis liquidos de
empresas de capital aberto cujas sedes estdo em paises desenvolvidos. As expectativas de taxa
de retorno e o risco tendem a ser mais elevadas que no caso de crédito. A liquidez destes
investimentos tende a ser alta, mas dependendo da estratégia a duragdo pode se estender.

Ac0es publicas de mercados emergentes (EQ EM) incluem papéis liquidos de empresas
de capital aberto cujas sedes estdo em paises em desenvolvimento. Comparado com as empresas
em paises desenvolvidos, a perspectiva de risco e retorno é maior, assim como a dispersao
dentro da classe de ativos. Apesar de haver uma variacdo grande, dependendo da bolsa de
valores onde os papéis sdo operados, tipicamente a liquidez € menor em paises emergentes.

Dividas de empresas privadas (PRIV CRED) incluem alocagdes em créditos de
companhias de capital fechado. Este investimento é iliquido uma vez que a retirada do recurso
antes da conclusdo do projeto ndo é possivel. O comportamento desta classe de ativos tende a
ter uma correlacdo alta com as dividas de empresas sem grau de investimento, porém com uma
taxa de retorno adicional em funcéo da iliquidez.

Real estate (RE) inclui investimentos iliquidos imobiliarios, destinados a venda, e de
base imobiliaria, destinados a operacdo. Essa classe de ativos inclui uma gama grande de
alocagdes, incluindo, por exemplo, fundos de investimento imobiliario e corretoras de imoveis.
Assim como as outras alocacBes iliquidas, ha questionamentos quanto ao método de
precificacdo do ativo, que geralmente se da trimestralmente. Mesmo que cotas do fundo sejam
negociadas no mercado, o que aumenta a frequéncia de precificagdo, ha limitacbes de acesso
publico a informagao.

Acdes de empresas privadas (PRIV EQ) incluem participacdo em empresas de capital
fechado. Esta classe de ativos € iliquida e em varios casos pode incluir interferéncia elevada do

investidor na companhia.
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Ativo livre de risco (RF) ndo é considerada uma classe de ativos nesta abordagem, mas
corresponde a taxa de retorno resultante de uma alocacdo considerada livre de risco.
Tipicamente sdo usados titulos de divida do governo federal estadunidense como referéncias de
remuneracdo. O montante nao investido em nenhuma das nove classes de ativos é considerado
alocado em ativo livre de risco.

A cada uma das classes foi atribuido um indice que corresponde ao comportamento

médio das taxas de retorno dos ativos classificados neste grupo (vide Tabela 3).

Tabela 3 Classes de ativos

Simbolo | Classe de Ativos Codigo indice

rf Livre de risco RF U.S. 10 Year Treasury Note

wl Baixa duracdo com grau de S&P 3-6M US T-bill TR Index
investimento IG SD

w2 Dividas de empresas com grau de Barclay NNG US Aggregate
investimento IG CORP

w3 Dividas de empresas sem grau de Bofa US HY Index
investimento HY CORP

w4 Retorno absoluto ABS RET HFRI Equal Fund Avg

wb Acles publicas de mercados MSCI World USD
desenvolvidos EQ DM

w6 Acles publicas de mercados MSCI EM USD
emergentes EQEM

w7 Dividas de empresas privadas PRIV CRED Cliffwater Direct Lending Index

w8 Real Estate RE Cambridge associates RE index

w9 Ac0es de empresas privadas Cambridge associates us private

PRIV EQ equity index

Fonte: Elaborado pela autora

O uso destes indices envolve algumas limitacGes, sendo algumas delas destacadas a
sequir.

Ao considerar a média das taxas de retorno de todos os ativos de uma determinada
classe, a possibilidade de incremento de valor decorrente do alpha € desconsiderada. Assim, um
possivel beneficio de uma boa selecéo de ativos em classes de maior disperséo é ignorado.

Além disso, indices nem sempre sdo representativos do mercado de interesse do
investidor. E possivel, por exemplo, que o desenvolvimento de uma classe de ativos seja
relativamente recente, de maneira que seus principais agentes ainda nao tenham se consolidado
para a formacdo de um indice representativo. Outro caso comum é a limitacdo de ativos nos
quais o investidor estd disposto a alocar recursos, de maneira que Se incorre em um erro

decorrente da ado¢édo de todo o indice na representacao da classe de ativos.
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Uma Gltima limitacdo destacada é a necessidade de ajustes na formulacéo para algumas
classes de ativos, em decorréncia de limitagdo do horizonte de dados histéricos disponiveis ou

de limitacdo de informacdes de retorno na frequéncia pretendida na aplicacao.

4.1.2 O célculo dos parametros

Nesta subsecdo sdo definidas as unidades amostrais e descritas as formulacGes para o
calculo dos parametros. Para isso € necessaria a definicdo dos intervalos a serem considerados
na coleta dos elementos da amostra de taxas de retorno historicas. Com este objetivo séo
definidos dois intervalos de tempo. Um deles se refere ao periodo de otimizacdo da alocacdo,
que neste caso compreende uma janela de longo prazo. O outro compreende a unidade minima
de tempo correspondente a frequéncia utilizada na coleta de precos dos ativos.

- T é o periodo considerado para a otimizacgdo da alocacdo do portfélio;

- t € aminima unidade de tempo entre duas coletas consecutivas de dados sobre o preco
dos indices das classes de ativos.

Analogamente a defini¢cdo dos intervalos considerados também sdo definidas duas
métricas para a taxa de retorno. Uma delas compreende a taxa de retorno para um intervalo T e
a outra a taxa de retorno para um intervalo t.

-0 eR" ¢ 0 j-ésimo elemento da amostra de taxas de retorno em um intervalo T;

- p@eRN ¢ 0 g-ésimo elemento da amostra de taxas de retorno em um intervalo t.

Para a coleta de dados relacionados a taxa de retorno (2, optou-se pela consideracéo

de janelas moveis consecutivas que divergem entre si de t, conforme formulacdo seguinte.
1 1
ro) = (V(i+T)_/V(i))1/ T H rU+D) = (V(i+T+t). /V(i+t))1/ . H
1 1

Onde,

-VWeRN ¢é o valor monetario do investimento no instante i;

- ] € o numero de elementos da amostra;

- a./b representa a divisdo termo a termo dos elementos de a pelos elementos de b.

Ja para a coleta de dados relacionados a taxa de retorno p‘@, a sequinte formulagéo foi

utilizada.
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Para a aplicacdo em questdo foi escolhido o intervalo de 10 anos para a otimizagao do
portfolio e de 1 més para a unidade minima de tempo de coleta de dados. A amostra contou
com 120 elementos, com dados mensais de janeiro de 1998 a dezembro de 2017. O conjunto
de séries historicas de precos foi obtido através do acesso a um terminal Bloomberg (2018).

T = 10 anos t =1meés J =120

Definidas as unidades amostrais, podem ser calculadas as métricas consideradas para
estimacdo dos parametros dos modelos, incluindo taxa de retorno, variancia e correlacdo das
classes de ativos.

A estimativa para taxa de retorno das classes de ativos é a média das taxas de retorno

dos intervalos amostrais de otimizacdo (7).

Onde,

- 7eRYN ¢ estimador de taxa de retorno das classes de ativos;

-r®RN ¢ k-ésimo elemento da amostra de taxas de retorno.

Para o célculo da correlacdo entre as classes de ativos, foi considerado todo o intervalo
amostral de taxa de retorno na unidade minima de tempo.

corr, = corr({pa™, pa @, ... pa 70} {0p ™, 0o @, ..., pp TP}

Onde,

- p(.)(i) é 0 i-ésimo elemento da amostra de taxas de retorno da classe de ativo (-) em
um intervalo ¢;

- a e b representam duas classes de ativos;

- corry, € 0 coeficiente de correlacéo linear das classes de ativos a e b.

No caso do calculo da variancia das classes de ativos também foram foram consideradas
duas métricas: uma para estimar o risco da classe de ativos, que é associado as taxas de retorno
p@ e aoutra para estimar a incerteza do parametro de taxa de retorno, que ¢ associado r®.

Para a variancia como métrica de risco, o valor usado é a media das variancias de p

dentro de cada janela movel de intervalo de tempo T.

J
52 = lz 52({p®, pk+D), . ple+T/t=1})
] 4 ) )
k=1

Onde,



72

- 62 ¢é estimador da variancia utilizada como métrica de risco.

J& para a variancia como métrica de incerteza dos parametros, o valor utilizado é a
variancia entre as taxas de retorno dos intervalos de tempo de otimizagdo T. Este resultado sera
utilizado como parametro para a geragao de conjuntos de retorno através da simulagdo de Monte

Carlo.

82, = 62 ({r®,r®, . r0})

- 6%, é estimador da variancia utilizada como métrica de incerteza de parametros.

4.1.3 As restricdes lineares

Foram consideradas restricdes lineares de alocacdo (i) de cada classe de ativos
individualmente, (ii) do total de investimentos iliquidos do portfdlio e (iii) do limite de alocacédo
méaximo do portfélio todo, conforme formulagdo seguinte. Esta Ultima restricdo implica que séo
considerados apenas portfolios com Exposicéo Liquida de 100% ao mercado.

Iw =1L,
Iw < Uy,
I'w < INax
1 .. 1lw=1

W=<w

Onde,

- W € o conjunto de alocagdes possiveis que respeitem as restrices lineares;

- IeRY x RY é matriz identidade;

- L,eRY é vetor com os limites inferiores de alocacdo das classes de ativos;

- U,eRYN ¢ vetor com os limites superiores de alocacéo das classes de ativos;

-TeZN é vetor de nimeros inteiros e{0; 1} que indica se a classe de ativos € iliquida (1)
ou liquida (0);

- [ax € escalar entre 0 e 1 que define a maxima alocacdo total em classes de ativos
iliquidas.

Nas simulacdes, a proporcdo de alocacdo em uma classe de ativos foi limitada ao
intervalo entre 0 e 1, de forma que ndo foram permitidas aloca¢des negativas. As classes
consideradas iliquidas sdo tanto dividas quanto acGes de empresas de capital fechado e real
estate (PRIV CRED, PRIV EQ e RE). Além disso, o limite maximo do total de alocagdo em

classes iliquidas considerado foi de 40%.

0 1
L,,=H U = ] r=[o .. 01 1 1] Tax = 40%
0
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4.2 OS DADOS UTILIZADOS

A partir das séries histdricas de retorno foram obtidas estimativas de taxas médias de
retorno e de variancia utilizadas como parametros dos modelos. Estes valores sdo mostrados na
Tabela 4.

Tabela 4 Taxa de retorno e variancia das classes de ativos

Classe de IG HY ABS EQ EQ PRIV PRIV
ativos G SD CORP | CORP | RET DM EM CRED RE EQ RF

Taxa de
Retorno

Volatilidade | 25% | 56% | 9.0% | 6.0% | 15.0% | 25.0% | 10.5% | 15.0% | 24.0% | 0.0%
Fonte: Elaborado pela autora

3.6% | 42% | 6.2% | 6.0% 7.8% | 85% | 10.0% | 8.0% | 11.8% | 3.1%

Na subsecio 2.3.4 é descrito que o Indice Sharpe é muitas vezes adotado para a tomada
de decisdes sobre a alocacdo de recursos entre diferentes classes de ativos. Desta forma, este
indicador foi calculado para os dados da Tabela 4, de forma que o resultado obtido € mostrado
no Grafico 15. A primeira vista, utilizando apenas estes dados, as classes de ativos de retorno
absoluto (ABS RET) e de crédito para empresas de capital fechado (PRIV CRED) parecem se

destacar.

Gréfico 15 Indice Sharpe para as classes de ativos consideradas
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Fonte: Elaborado pela autora
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Pode-se lembrar, no entanto, que foram descritas limitaces de aplicacdo desta
representacdo em virtude da desconsideragdo da correlagdo entre as classes de ativos e da
hipdtese de relacédo linear entre retorno excedente e risco. De fato, se 0s mesmos dados forem
observados no plano de representacao da fronteira eficiente (vide Grafico 16) percebe-se que a
classe de ativos de retorno absoluto (ABS RET) j& ndo parece tdo atrativa, ao contrario de aces

de empresas privadas (PRIV EQ), que ganha relevancia.

Grafico 16 Taxa de retorno e desvio-padréo das classes de ativos consideradas contra fronteira eficiente

classica de Markowitz.
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Fonte: Elaborado pela autora

4.3 HIPOTESES ADOTADAS

Definidos os parametros a serem utilizados nos modelos, também é importante verificar
se 0s dados amostrais sdo aderentes as hipoteses consideradas, conforme descrito na se¢do 3.6.
Entre as hipdteses estdo (i) a aproximacao das distribuicdes de taxa de retorno por uma normal
multivariada, (ii) a baixa variagdo da volatilidade entre os intervalos de otimizacdo

considerados e (iii) a correlacdo razoavelmente constante entre as classes de ativos.
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4.3.1 Normalidade das taxas de retorno

Muitos dos modelos abordados tém como premissa a distribuicdo normal de taxas de
retorno historicas. Para verificar o nivel de aderéncia da amostra a esta hipotese, os dados de
taxa de retorno no intervalo de tempo que se pretende otimizar foram despostos em um Papel
de Probabilidade Normal (vide Gréfico 17). Apesar da existéncia de alguns desvios, pode-se

notar que a aproximacao atraves destes parametros parece razoavel.

Gréfico 17 Papel de probabilidade normal aplicado aos elementos da amostra de cada classe de ativos
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Fonte: Elaborado pela autora

4.3.2 Dispersao de variancia

Outra hipdtese considerada é a baixa dispersdo das métricas de risco entre os intervalos
de tempo nos quais pretende-se otimizar o portfélio. Alguns dos modelos abordados consideram
a amplitude de flutuagdo de valor de cada classe de ativos como deterministica e constante. Para
0 caso de a métrica de risco ser a volatilidade, é esperado que a variancia de diferentes janelas
tenha diferencas pequenas. O Gréafico 18 foi construido atraves do calculo da variéncia de
conjuntos de taxas de retornos mensais para cada classe de ativos, considerando uma janela

movel de 10 anos, conforme definido na subsecéo 4.1.2. De fato, observando-se o Grafico 18 é
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possivel notar que parece razoavel considerar a variancia constante para os intervalos utilizados
neste texto.

Gréfico 18 Variancia como métrica de risco considerando o intervalo minimo como um més e o intervalo

de otimizacé&o de alocacéo de 10 anos
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Fonte: Elaborado pela autora

4.3.3 A estrutura da correlacido

Por fim é verificada a hipdtese de correlacdo aproximadamente constante entre as
classes de ativos nos intervalos de otimizacgdo considerados (vide Tabela 5). Observa-se que,
no caso de alocacdes com baixa duracdo e grau de investimento (IG SD), a dispersdo da
correlacdo parece elevada. No entanto, se for considerada a baixa taxa de retorno desta classe
de ativos, o impacto deste desvio nos resultados dos modelos é menos significativo. Ja no caso
de Real Estate (RE) esta variancia pode ter impacto maior nas solucdes, de forma que a

correspondéncia a realidade da hipoGtese de correlacdo constante destes fatores pode ser
guestionada.



77

Tabela 5 Dispersao da correlacéo entre as classes de ativos em intervalos de 10 anos

Desvio-
padrdo do
coeficiente IG HY ABS EQ PRIV PRIV
de 1GSb CORP CORP RET DM EQEM CRED RE EQ
correlagao
linear
IG SD 0.0% 5.3% 6.6% 15.1% | 11.7% | 15.2% | 12.7% 6.1% 15.6%

IG CORP 5.3% 0.0% 1.1% 2.8% 1.0% 3.4% 1.7% 3.1% 2.8%
HY CORP 6.6% 1.1% 0.0% 2.1% 0.5% 2.5% 2.0% 3.1% 1.3%
ABS RET 15.1% 2.8% 2.1% 0.0% 0.3% 0.5% 2.2% 7.3% 0.8%
EQ DM 11.7% 1.0% 0.5% 0.3% 0.0% 0.6% 1.4% 5.6% 1.3%
EQ EM 15.2% 3.4% 2.5% 0.5% 0.6% 0.0% 3.3% 7.3% 1.0%
PRIV CRED | 12.7% 1.7% 2.0% 2.2% 1.4% 3.3% 0.0% 6.5% 2.6%
RE 6.1% 3.1% 3.1% 7.3% 5.6% 7.3% 6.5% 0.0% 6.6%

PRIV EQ 15.6% 2.8% 1.3% 0.8% 1.3% 1.0% 2.6% 6.6% 0.0%
Fonte: Elaborado pela autora

4.4 COMPARACAO DOS MODELOS

Nesta secdo pretende-se comparar os resultados gerados pelos diferentes modelos
abordados analisando tanto a fronteira eficiente quanto as proporg¢des de alocacdo dos portfolios
considerados Otimos. Primeiramente sdo aplicadas técnicas de verificacdo das simulacdes
computacionais, seguidas da analise do desempenho das soluc6es frente a uma distribuicao de
taxas de retornos. Por fim, os resultados obtidos s&o comparados com alocagdes reais de

portfélios de instituicdes financeiras.

4.4.1 Aplicacdo de técnicas de verificacido das simulacdes

Apos a construcdo de um modelo de simulagcdo computacional é necessario que sejam
feitos testes com a finalidade de verificar sua aplicacdo (Pace, 2004), sob a pena de adocao de
resultados incorretos. Assim, as técnicas de verificacao pretendem determinar se uma simulacao
foi construida adequadamente de acordo com as hip6teses do modelo.

Nesta subsecdo sdo aplicadas duas técnicas de verificacdo dos modelos. (i) Em uma
delas séo comparados resultados de duas resolucdes distintas, tal que a condic¢do considerada
faz com que a abordagem mais complexa recaia no caso de aplicagédo do modelo mais simples.
Isso pode ser feito comparando os resultados das duas técnicas de resolucdo abordadas para o
modelo classico de Markowitz (vide secdo 3.1), uma delas através de um sistema linear e a

outra através de programacdo linear quadrética. (ii) Pode-se também comparar as diferencas
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entre as fronteiras eficientes. Todos os modelos desenvolvidos buscam otimizar o retorno dado
um nivel limite de risco. Desta forma, é esperado que as fronteiras eficientes dos modelos
estejam proximas, ainda que ndo coincidente devido as diferencas nas métricas adotadas.

A primeira técnica de verificacdo aplicada pretende comparar os resultados de duas
técnicas de resolucdo distintas para 0 mesmo modelo, sendo esperado que os resultados sejam
coincidentes (Pace, 2004). Para o modelo classico de Markowitz a solugdo mais genérica
envolve programacdo linear quadratica. Ha, no entanto, uma solucéo alternativa aplicavel em
um caso especifico. Se as restricdes lineares do modelo forem todas de igualdade, é possivel
descrever o mesmo problema utilizando um sistema de equacdes lineares. Desta forma, se 0s
parametros das simulacdes estiverem contidos no dominio da aplicacdo da solugcdo mais
simples, 0 que neste caso implica em auséncia de restricdes de desigualdade, é esperado que as
solugdes Otimas coincidam. O Gréafico 19 mostra como, de fato, as fronteiras eficientes
comportam-se da maneira esperada. Os resultados para as propor¢oes das alocagdes encontram-

se no Apéndice C.1.

Gréfico 19 Fronteira eficiente das soluces de Markowitz classicas
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Fonte: Elaborado pela autora

Outra técnica de verificagdo consiste na comparacao de resultados de diferentes modelos
que pretendem descrever o mesmo fendémeno (Pace, 2004). Como as hipoteses e 0s parametros
variam, ndo € esperado que os resultados sejam coincidentes, mas que tenham um
comportamento similar. Neste texto foram abordados diversos modelos que tem o mesmo
objetivo de otimizar a alocag&o de recursos em diferentes classes de ativos. Cada um deles tém

uma meétrica de risco e um conjunto de hipoteses distinto, no entanto, através deste teste de
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verificagdo procura-se identificar similaridades entre seus resultados. De fato, as fronteiras
formadas pelos portfélios 6timos de cada modelo apresentam grande similaridade, conforme
pode ser visto no Gréafico 20, onde:

- MK ¢ gerado através da solucéo classica genérica de Markowitz;

- Cvar € gerado através da solucdo de minimizagdo de Cvar de Rockafellar e Uryasev;

- MAXR é gerado através da solucdo de Fabozzi (2007);

- ROB-LMI é gerado através da solucdo robusta de Costa e Paiva (2000);

- MV-AVG é gerado atraves da solucéo estocastica de Michaud (1998).

Gréfico 20 Fronteiras eficientes a partir de diferentes modelos
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Fonte: Elaborado pela autora

4.4.2 Andlise das fronteiras de eficiéncia

Para a analise dos modelos de otimizacdo de alocacdo sdo consideradas duas
abordagens: em uma delas é avaliado o desempenho do portfolio e na outra é feita a comparagéo
com alocacgOes reais de institui¢cbes financeiras. Nesta subsecdo é desenvolvida a primeira
comparacao.

Para isso, os portfolios 6timos resultantes de diferentes abordagens seriam submetidos
a taxas de retornos em intervalos ainda ndo contidos na amostra, de forma que se poderia

observar qual alocacdo teria tido uma maior taxa de retorno. Assim, o ideal seria a consideragéo
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de uma amostra cujos elementos nao estdo contidos no conjunto utilizado para os calculos dos
pardmetros dos modelos. No entanto, ha limites para o nimero de elementos da nova amostra,
uma vez que os indices para algumas classes de ativos sdo relativamente recentes. Como héa
limitacdo historica no conjunto de dados disponiveis, optou-se pela simulacdo através da
geracdo de valores aleatérios utilizando a distribuicdo normal multivariada com os parametros
obtidos na amostra inicial. H& limitacdes consideraveis nesta abordagem dado ndo se trata de
dados historicos reais, mas a reproducdo de um método que, por si so, ja carrega erros.

Para todos os modelos foi simulada uma fronteira eficiente com 50 portfolios 6timos
igualmente espacados em fungdo da varidncia como métrica de risco. Para nenhuma das
abordagens foi considerada a alocacdo em ativo livre de risco.

A primeira comparacao € feita entre 0 modelo classico de Markowitz e as abordagens
estocastica e robusta. Desta forma, inicia-se pela descricdo dos parametros especificos de
simulacdo. No caso do modelo de Michaud a formacédo de agrupamentos foi baseada em nivel
de risco, tendo sido desconsideradas 10% das alocacGes de cada grupo, tidas como extremas.
Quanto aos parametros de iteracdo, foram simulados 500 cenarios de taxa de retorno, com 50
pontos igualmente espacados por fronteira eficiente e 50 agrupamentos de niveis de risco. A
solucdo no caso da otimizacdo robusta considerou como parametros apenas 1 cenario de
covariancia e 5 cenarios de taxas de retorno, gerados através de simulacdo de Monte Carlo (vide
Apéndice B.4). Na simulagdo com a abordagem robusta, 0 aumento do nimero de cenarios
considerados eleva consideravelmente a frequéncia com que ocorrem problemas infactiveis.
Desta forma, foi possivel considerar apenas um total de 5 cenérios de taxa de retorno como
parametros de incerteza.

Definidos os parametros parte-se para a comparagdo do desempenho das alocagdes. O
modelo de Markowitz define o conjunto de portfolios 6timos para certos valores dos parametros
de entrada. No entanto, com pequenas alteracGes destes parametros os resultados obtidos
originalmente podem se tornar bastante ineficientes. Tanto o modelo de otimizag&o robusta
quanto o modelo estocéstico pretendem reduzir a sensibilidade dos resultados a pequenos erros
nos parametros de taxa de retorno de longo prazo das classes de ativos. Desta forma, o portfolio
6timo selecionado por estes métodos ndo é o 6timo para a média da expectativa de retornos,
mas o 6timo com base em um conjunto de retornos distribuidos normalmente ao redor da média.
Considere, um cenario hipotético em que na definicdo dos parametros havia incerteza, porém,
ao final do intervalo de tempo de longo prazo, observou-se que as médias estimadas se
consolidaram. Neste caso especifico, o portfélio de melhor desempenho é o de Markowitz

classico. Ja os obtidos através de abordagens robusta e estocastica apresentam um desconto de
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taxa de retorno resultante. O objetivo desta comparagéo € verificar o tamanho deste desconto
advindo da incorporacdo de incerteza na definicdo dos parametros. O Grafico 21 mostra o
desempenho dos trés conjuntos de portfélios 6timos para o caso de consolidacdo dos retornos
médios estimados. Pode-se observar que, para as condi¢des estudadas, o desconto maximo se
limitou a 0.6% de taxa de retorno para todos os niveis de risco.

Como o modelo robusto considera a minimizacdo do pior caso de volatilidade, seria
esperado que o desconto observado por conta da incerteza fosse maior que o obtido com o
modelo estocastico, que considera a média dos portfélios 6timos. I1sso ndo é evidente no Gréafico
21Error! Reference source not found. por conta da limitacdo pratica do nimero de cenérios
considerados no caso da simulagdo robusta, que totalizou 5 frente a 500 no caso da estocastica.
Desta forma, com os parametros utilizados, a incerteza nas taxas de retorno de longo prazo para
a abordagem robusta foi subestimada em razdo de uma limitacdo pratica da aplicacdo do

modelo, associada & alta frequéncia de situacOes infactiveis.

Gréfico 21 Fronteiras eficientes para as solu¢des de Markowitz
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Fonte: Elaborado pela autora

Parte-se, agora, para a analise das solucBes propostas pelo modelo de Rockafellar e

Uryasev. A simulacéo considerou a confiabilidade de 90% (8 = 10%). Neste caso, foi possivel



82

considerar apenas 200 cenérios de taxa de retorno por conta da alta demanda de processamento
computacional demandada pela solugdo. No entanto, o impacto desta limitacdo é bem menos
relevante do que a presente na abordagem robusta.

A comparacao dos resultados do modelo de Rockafellar e Uryasev com os do modelo
de Markowitz depende da percepcéo de risco do investidor, uma vez que as métricas utilizadas
sdo diferentes. Se para um investidor a percepcao de risco € melhor refletida em volatilidade,
entdo o desempenho dos portfélios de Markowitz parecera melhor (vide Gréafico 22). No
entanto, se a interpretacdo de risco do investidor se aproximar mais do conceito utilizado por
CVar, entdo o desempenho dos portfélios 6timos do modelo de Rockafellar e Uryasev parecera

melhor.

Grafico 22 Comparativo entre fronteiras eficientes
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Fonte: Elaborado pela autora

Por fim, sdo analisadas as solug¢des propostas pelo modelo de maximizagéo de retorno.
A fronteira eficiente gerada por este modelo é similar a de Markowitz cléssica (vide Grafico
23). H4, no entanto, limitacGes de aplicacdo da simulacdo descrita. Para alcancar diferentes
niveis de risco, é necessario que se modifique o coeficiente k que representa o desvio maximo
permitido para um portfolio (conforme descrito na secdo 3.5). Nota-se a principio que a

progressdo do retorno e da volatilidade em fungéo do coeficiente k é de dificil representacéo,
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apresentando platds e regides de derivada infinita (vide Grafico 24). Desta forma, torna-se mais

dificil a construgdo de uma fronteira eficiente com uma distribuicdo homogénea dos pontos.

Grafico 23 Fronteira eficiente para maximizagdo do retorno e minimizacao da volatilidade
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Fonte: Elaborado pela autora

Gréfico 24 Retorno e volatilidade em funcéo de k

Retorno e Volatilidade em fungdo de k

100% 150% 200% 250% 300% 350%  400%

—@—Taxa de retorno (esq.) Desvio padrao (dir.)
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4.4.3 Anélise comparativa com alocacoes reais

Nesta subsecdo € a desenvolvida a comparacdo com alocacdes reais de instituicdes
financeiras. Esta analise € complementar a anterior, uma vez que ela da conta de aspectos até
entdo ignorados, como as restricdes de mobilidade de alocagdo entre portfélios com niveis de
risco proximos. Isto é, um incremento ou reducdo pequenos do nivel de risco pretendido pelo
investidor ndo podem envolver uma alteragdo muito drastica das alocacfes do portfolio, uma
vez que na pratica ha restri¢oes de liquidez para estas movimentacdes.

Desta forma, a principio sdo abordados alguns exemplos de alocacdo aplicados por
instituicdes que gerenciam portfolios com diferentes classes de ativos, para que algumas
caracteristicas possam ser compreendidas. Em seguida, é realizado o confronto das solucdes
abordadas neste texto, para que possam ser definidas algumas hipéteses que delimitam a
aplicagéo.

Dentre as institui¢des que realizam investimento utilizando légicas de alocagéo racional
destacam-se familias abastadas, fundos de pensao e endowments:

a) Familias com grandes fortunas podem contratar instituicbes ou montar escritorios
para gerenciar a alocacdo de seus recursos. Trata-se de um grupo bastante pulverizado com
diferentes politicas de investimento e eficiéncia de portfélio heterogénea.

b) Fundos de pensdo geralmente concentram recursos de funcionarios de instituicoes
publicas ou privadas com a intencdo de gerar retorno para a aposentadoria dos contribuintes.
Dentre os maiores no Brasil destacam-se Postalis, dos funcionérios dos Correios, Funcef, dos
funcionérios da Caixa Econdmica Federal, e Petros, dos funcionarios da Petrobras. Geralmente
ha normas rigidas que limitam decisfes de alocacdo de recursos e normalmente apresentam
eficiéncia limitada.

c¢) Endowments sdo instituicdes que pretendem criar um patrimonio, no limite, perpétuo,
como objetivo de gerar recursos continuamente para conservacgao, expansdo e promocao de
certa atividade. Isso é feito através de uma alocacdo racional do recurso. Uma modalidade
bastante comum é aplicada por universidades conceituadas estadunidenses, com resultados
utilizados como referéncia para diversos gestores de portfélio.

Neste estudo serdo considerados dados de endowments de grandes universidades
estadunidenses, por conta (i) do volume grande de recursos, que normalmente esta mais
pulverizado no caso de familias, (ii) da verdadeira perspectiva de longo prazo e (iii) da
existéncia de maior liberdade de alocacéo para os gestores, o que geralmente ndo se verifica no

caso de fundos de penséo.
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De fato, pode-se observar no Grafico 25 que o desempenho dos maiores endowments se
destaca frente a diferentes instituicOes de alocacdo de capital. Observando a comparagdo com a
fronteira eficiente de Markowitz, nota-se que ha pontos localizados na regido infactivel, o que
resultaria em uma aparente incoeréncia. Ha de se recordar, no entanto, que no caso da taxa de
retorno destas instituicdes o alpha é considerado, assim como outras classes de ativos ndo

discutidas neste texto.

Grafico 25 Desempenho de instituicdes de alocagdo de capital em intervalo de 10 anos contra a fronteira
eficiente de Markowitz utilizada neste texto. Crédito é modelado pelo indice Bloomberg Barclay US Agg
Bond e Agdes ¢ modelado pelo indice S&P500.
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Fonte: laborado pela autora com dados de Yale endowment (2017) e do terminal Bloomberg

Na Tabela 6 é mostrada a composicdo do portfélio para o endowment de Yale. Uma
breve descricdo das classes de ativos consideradas por Yale e ndo abordadas anteriormente no
texto esta disponivel no Apéndice B.7. Pode-se perceber que os recursos se dividem entre
diferentes classes de ativos, ndo havendo alocacdes extremas em nenhuma delas. Dessa forma,
ainda que haja perspectiva menos favoravel de longo prazo para algumas classes de ativos, sua
alocacdo no portfolio tende a ndo ser reduzida a zero. O mesmo se sustenta historicamente para
0 endowment de Yale (Grafico 26) e para os cinco maiores endowments de instituicbes de
ensino dos EUA (vide Apéndice C.2). Duas hipéteses sdo levantadas para esse comportamento:
(i) a dificuldade de levantamento de novas oportunidades de investimento com a rapidez

necessaria a movimentacgéo entre alocacgdes extremas e (ii) o reconhecimento de certa limitacéo
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dos modelos na identificagdo de todos os possiveis cenérios. Desta forma, é possivel que
resultados que incluam alocacBes extremas sejam menos aderentes a realidade de gestdo de
portfolio em investimentos de longo prazo.

Outra caracteristica importante das solucdes em aplicacOes reais € a limitacdo da
diferenca entre portfolios 6timos para niveis de risco proximos. Em situac@es reais, conforme
descrito na subsecdo 2.3.1, ha restricdes de liquidez que impedem ou dificultam mudancas
bruscas de alocacdo em curtos intervalos de tempo. Dessa forma, uma possivel necessidade de
elevacao ou reducdo do nivel de risco deve envolver apenas alteracfes pequenas nas proporcdes

das classes de ativos no portfélio.

Tabela 6 Alocacgdo de recursos entre classes de ativos do endowment da Univesidade de Yale.

Classe de Ativos Alocacdo (Yale)
Retorno absoluto 25.1%
Acdbes domésticas (EUA) 3.9%
Renda fixa 4.6%
Acdes estrangeiras (ex-EUA) 15.2%
Leveraged Buyouts (a¢Bes de empresas privadas) 14.2%
Recursos naturais (real asset) 7.8%
Real Estate (real asset) 10.9%
Venture Capital (agbes de empresas privadas) 17.1%
Caixa 1.2%

Fonte: Yale endowment (2017) modificado

Gréfico 26 Alocacéo histdrica entre classes de ativos do endowment de Yale
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As caracteristicas identificadas nos portfdlios reais destas institui¢fes financeiras sao,
entdo, comparadas com as solucgdes propostas pelos modelos desenvolvidos. Para isso deve-se
observar uma volatilidade proxima a 13%, que coincide com o histdrico do endowment de Yale
(conforme ja mostrado no Grafico 25).

Primeiramente é analisado o resultado de alocacdo do modelo classico de Markowitz.
No Gréfico 27 sdo mostradas as proporc¢des de alocacao dos portfolios sugerido para cada nivel
de volatilidade. E possivel observar que os resultados parecem bastante extremos e instaveis.
Isso €, a alocacgéo 6tima por esse método envolve poucas classes de ativos e grande sensibilidade
a pequenas variagdes do limite de risco méximo pretendido. No caso do nivel de volatilidade
historico do endowment Yale (13%) o resultado prevé, ao inves da diversificacdo observada na
Tabela 6, a alocacdo em principalmente duas classes de ativos, acdes de paises desenvolvidos
(EQ DM) e crédito a empresas de capital fechado (PRIV CRED).

Esse comportamento é consequéncia, sobretudo, da consideracdo de taxas de retorno
deterministicas para as classes de ativos em intervalos de longo prazo. Conforme visto
anteriormente, ha um grande impacto desta premissa nos resultados de alocacdo considerando
a sensibilidade do modelo a variagbes deste pardmetro. Dessa forma, a aplicacdo de seus
resultados € limitada para o caso abordado.

Portanto, a aplicacdo deste modelo parece ser mais adequada em casos nos quais (i) ha
pouca incerteza das taxas de retorno de longo prazo das classes de ativos, (ii) ha facilidade e
rapidez na execucdo de mudancas grandes de proporc¢des de alocacdo de um portfélio e (iii) a
distribuicdo das taxas de retornos histéricas se aproximam da distribuicdo de probabilidade

normal.
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Gréfico 27 Portfolios 6timos para diferentes limites de risco obtidos através da resolucéo classica de
Markowitz
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Fonte : Elaborado pela autora

A mesma anélise é agora aplicada para as sugestdes de alocagdo obtida através do

modelo de maximizacéo do retorno. O resultado (vide Grafico 28) é bastante similar ao classico

de Markowitz. Destaca-se, no entanto, que ha limitacbes importantes de aplicacdo desta

abordagem, entre elas a dificuldade de obtencdo de resultados igualmente espacados para a

fronteira eficiente e hipoOtese de retornos deterministicos para as classes de ativos.

Desta forma, este modelo é adequado para os casos em que (i) a incerteza de taxas de

retorno futura das classes de ativos € pequena, (ii) a eficiéncia de simulagdo computacional ndo

€ um requisito essencial, (iii) ha facilidade em mudangas extremas de alocacéo do portfolio e

(iv) distribuicdo das taxas de retorno pode ser aproximada por curvas normais.
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Gréfico 28 Alocagdes entre as classes de ativos para diferentes niveis de risco com o modelo de

maximizacdo da taxa de retorno
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Fonte: Elaborado pela autora

Parte-se, entdo, para a analise da alocacao de abordagens que consideram incerteza nas
taxas de retorno de longo prazo das classes de ativos.

No Grafico 29 é mostrado o resultado de alocacdo do modelo de otimizacdo robusta
para diferentes niveis de risco. E possivel perceber que os portfélios distribuem a alocagdo em
um namero maior de classes de ativos. Na volatilidade do portfélio do endowment de Yale
(13%), ha investimento em retorno absoluto (ABS RET), acGes de mercados emergentes (EQ
EM), crédito de empresas de capital fechado (PRIV CRED) e ac¢bes de empresas de capital
fechado (PRIV EQ).

No entanto, algumas transi¢des de portfolios entre niveis de volatilidade diferentes ainda
séo bastante bruscas. Esse € 0 caso da substituicao total entre agdes de mercados desenvolvidos
(EQ DM) e acbes de mercados emergentes (EQ EM) proximo ao nivel de volatilidade méxima
de 11%. Isso se da, sobretudo, pela limitacdo de cenarios considerados pelo modelo, o que leva
a priorizacdo de alocacBes mais extremas. Conforme discutido anteriormente, a abordagem
considera minimizacgéo da volatilidade do pior caso entre a combinagéo linear dos cenérios
parametrizados, o que pode ser considerado bastante conservador. Dessa forma, a ampliacéo do
numero de cendrios leva a alocacBes com descontos importantes de retorno em relacdo ao
portfdlio classico de Markowitz. Mesmo que se opte pelo aumento do nimero de cenarios
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considerados, a resolucdo pode se tornar praticamente inviavel em virtude do aumento da
frequéncia de ocorréncia de problemas infactiveis.

Dessa forma, este modelo parece ter um desempenho melhor nos casos nos quais (i) ha
maior preocupacao em preservacdo de valor e ndo necessariamente ampliacéo de ganhos, (ii) o
comportamento histérico das taxas de retorno pode ser representado por um conjunto pequenos
de cenérios de retorno e (iii) a distribuicdo das taxas de retornos histéricas se aproximam da
distribuicéo de probabilidade normal.

Ja abordagem de Michaud (vide Grafico 30) apresenta transicdes mais graduais de
alocacéo entre portfolios com niveis de volatilidade proximos. Além disso, ha distribuicdo da
proporcdo das alocacBes dos portfélios em muitas das classes de ativos. No mesmo nivel de
volatilidade do portfélio do endowment de Yale (13%), ha investimento em todas as classes de
ativos consideradas. Desta forma, o modelo de Michaud é o que mais se aproximas das
caracteristicas observadas nos portfolios reais de institui¢des financeiras.

A abordagem estocéstica apresenta uma vantagem importante ao definir um conjunto
de portfolios para cada nivel de volatilidade. Desta forma, é possivel definir ndo apenas um
portfélio, mas um intervalo de alocacdo otimizado, de forma que podem ser feitos pequenos
ajustes de alocacdo sem o risco de afastamento muito relevante do ponto eficiente. Isso é
bastante relevante se for considerada a necessidade de rebalanceamento e alocacéo tatica de
portfélio, conforme discutido na subsecédo 2.3.7.

Desta forma, esta abordagem parece ter desempenho melhor quando (i) ha incerteza
consideravel, mas limitada das taxas de retorno de longo prazo das classes de ativos, (ii)
investimento demandam tempo para realocacédo e (iii) a distribuicdo do histérico de taxas de
retorno das classes de ativos se aproxima de distribuicdes normais de probabilidade.



Gréfico 29 Alocagéo entre classes de ativos obtida através da abordagem de otimizacéo robusta
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Fonte: Elaborado pela autora

Grafico 30 Portfélios médios para diferentes niveis maximos de risco considerando a abordagem
estocéstica
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Por fim, o modelo de Rockafellar e Uryasev gera as sugestdes de alocagcdo mostradas
no Grafico 31. Apesar de haver maior distribuicdo de investimento entre as classes de ativos se
comparado com o modelo classico de Markowitz, ainda ha afastamento importante das
caracteristicas identificadas nas aplicacGes reais. No nivel de volatilidade do portfolio do
endowment de Yale (13%) a alocacdo se concentra somente em duas classes de ativos: acoes
de paises desenvolvidos (EQ DM) e crédito de empresas de capital fechado (PRIV CRED). As
transicdes entre portfolios de niveis de volatilidade proximos sdo mais bruscas que as obtidas
no modelo de Michaud.

Cabe ressaltar também que a simulacdo se torna menos eficiente com o aumento do
namero de cenarios. A limitagdo ndo é tdo grande quanto no caso da abordagem de otimizacéao
robusta, de forma que um numero consideravel de parametros pode ser utilizado, o que, no
entanto, implicou no aumento significativo do tempo de processamento do computador
utilizado.

Desta forma, este modelo € aplicavel para os casos em que (i) a distribuicdo histérica de
taxas de retorno ndo pode ser aproximada por uma normal, (ii) ha relativa flexibilidade na
mudanca de alocacdo de recursos e (iii) 0 comportamento das taxas de retorno histéricas pode

ser representado por um numero limitado de cenarios.

Gréfico 31 Alocagéo entre as classes de ativos dos portfélios 6timos para modelo de minimizagéo de Cvar
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5 CONCLUSAO

Este trabalho teve como objetivo comparar diferentes modelos descritos na literatura
para a otimizacdo da alocacao de recursos em horizontes de longo prazo. Dado que a solugéo
classica de Markowitz apresenta limitagdes importantes de aplicagdes em casos reais, foram
consideradas alternativas, a saber: um modelo que utiliza processos estocésticos, um modelo de
otimizacdo robusta, um modelo de minimizacdo de CVar e um modelo de maximizacao de
retorno.

Primeiramente foi necesséria a construgdo de uma fundamentagéo tedrica para que as
métricas de comparacdo de diferentes portfolios pudessem ser definidas. Desta forma, foram
descritos conceitos como risco, retorno, liquidez, classes de ativos e fronteira eficiente.

Posteriormente os modelos de otimizagdo abordados neste trabalho de formatura foram
descritos e suas hipoteses discutidas. Cada uma das alternativas foi implementada com o auxilio
de ferramentais de simulagdo computacional (Scilab).

Pdde-se, entdo, definir as classes de ativos utilizadas e os parametros de entrada de cada
um dos modelos para que as simulagdes fossem executadas. Aos resultados foram aplicados
testes de verificacdo a fim de garantir que a construcéo foi feita de maneira correta.

Os portfélios sugeridos pelos diferentes modelos foram submetidos a condi¢fes de taxas
de retorno simuladas, tal que se pudesse comparar o desempenho de cada um deles. Para
complementar esta analise também foi realizado o confronto das solucGes obtidas com
alocacdes reais de instituicGes financeiras.

Aplicando tais procedimentos foi possivel identificar que a abordagem de Michaud
obteve resultados bastante aderentes a portfolios considerados eficientes. Dessa forma, muitos
destes conceitos foram utilizados para embasar a constru¢cdo do modelo que ja encontra
aplicacdes reais de apoio a tomada de decisdo na empresa em que 0 programa de estagio se
desenvolveu.

Sugere-se como proposta de continuidade do presente trabalho a consideragcdo de
modelos mais complexos para a melhoria da descricdo da relacdo entre os retornos das classes
de ativos. Estes modelos poderiam ser aplicados tanto nas simulagdes de Monte Carlo utilizadas
quanto na melhoria do calculo de risco resultante de um portfolio.

Outra possivel continuidade deste trabalho de formatura refere-se a incorporagédo de
outros fatores que influenciam o comportamento das classes de ativos. Isto €, medidas como

taxa de juros e crescimento econémico, por exemplo, apesar de ndo necessariamente serem
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alvos diretos de investimento, podem contribuir para a reducdo da incerteza da expectativa de
taxas de retorno das alocagdes de longo prazo.
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Neste capitulo sdo expostos os codigos em Scilab utilizados para a execucdo das

simulagdes computacionais.

A.1 SOLUCAO DE SISTEMA DE EQUACOES LINEARES

from=0.0 //min return

t0=2.8/100 //max return

incr=0.0001 //incremento para return
dim=8 // numero de asset classes

[fd,SST,Sheetnames,Sheetpos]| =
xls_open('C:\Users\User\Desktop\Dados_Resultados_M
odelo.xls")
[Value,TextInd] = xIs_read(fd,Sheetpos(1)) ; mclose(fd)
avgret=from ; M=[]
while avgret <= to
Y e e construgdo matriz A------------
fori=1:dim
for j=1:dim
A(ij)=Value(6+i,2+j)
end;
A(i,dim+1)=-Value(3,2+i)
A(i,dim+2)=-1.0
b(i)=0
A(dim+1,i)=Value(3,2+i)
A(dim+2,i)=1.0
end;

for i=(dim+1):(dim+2)
for j=(dim+1):(dim+2)
A(i,j)=0.0
end
end
b(dim+1)=-avgret
b(dim+2)=-1.0

[x0,kerA|=linsolve(A,b)
avgret=avgret+incr
M=[M;x0."]

Y et create csv file------------------

csvWrite(M,'C:\Users\User\Desktop\result_markshort.

csv')

A.2 SOLUCAO DE PROGRAMACAO QUADRATICA

Y Conexao com Excel------------------
[fd,SST,Sheetnames,Sheetpos]| =
xIs_open('C:\Users\User\Desktop\Dados_Resultados_M
odelo.xls")
[Value,TextInd] = xIs_read(fd,Sheetpos(1))
mclose(fd)
Y Construcao Matriz-------------------
M=[]
fori=1:dim

C(1,i)=Value(3,2+i)

C(2,1)=1.0; ci(i)=0.0; cs(i)=1.0; p(i)=0.0

for j=1:dim

Q(i,j)=Value(i+6,j+2)

end
end
C=[C;[0,0,0,0,0,1,1,1]] ; b(2)=1; b(3)=illigmax ; me=2
[~ Calculo Ini e Fim----------=-=-=-=-=----
ini=min(C(1,7))
max1=0.0; max2=0.0
minl=max(C(1,))); min2=max(C(1,))

fori=1:3
if minl > C(1,i+5) then min1 = C(1,i+5) end
if max1 < C(1,i+5) then max1=C(1,i+5) end
end
fori=1:5
if max2 < C(1,i) then max2=C(1,i) end
if min2 > C(1,i) then min2=C(1,i) end
end
fim= max((illigmax * max1) + ((1-illigmax) *
max2),max2)
ini=min((illigmax * min1) + ((1-illigmax) * min2),min2)

avgret=ini+incr

while avgret <= fim
b(1)=avgret
[x0,iact,iter,f|=gpsolve(Q,p,C,b,ci,cs,me)
M=[M;x0."]
avgret=avgret+incr

end
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A.3 SOLUCAO DE PROGRAMAGAO CVAR

rand("seed",getdate('s")) ; rand("normal")
function y=retornos(NClass, NRet, LTM, R)
//gera NRet conjuntos de retornos equiprovdveis com
NClass classes de ativos
for h=1:NRet
for i=1:NClass z(i)=rand() end
for i=1:NClass
aux=0.0
forj=1:NClass aux=aux+LTM(i,j)*z(j) end
aux=aux+R(i)
R_der(h,i)=aux
end
end
y=R_der
endfunction
//geragdo de conjuntos de retornos equiprovdveis
LTM=choleskey(Ach,NClass)
R_der=retornos(NClass,NVar,LTM,R)

//equality constraints: sum(wi)=1
beq=[1.0]; Aeq(1:NClass)=1.0*ones(NClass,1)
Aeq(NClass+1:(NClass+NVar+1))=0.0*ones(NVar+1,1)
//fo inputs: alpha+avg(zi)/(1-beta)
C(1:NClass)=0.0*ones(NClass,1)//weights
C(NClass+1)=1.0//alpha
C(NClass+2:(NClass+NVar+1))=
(1/((1-vbeta)*NVar))*ones(NVar,1)//z
//inequality constraints

//return: sum(wi*ri)>=R
fori=1:NClass Aineq(1,i)=-mean(R_der(:,i))end
Aineq(1,NClass+1:(NClass+NVar+1))=0.0*ones(1,NVar+
1)

//liquidity: sum(w illiq)<=illigmax
Aineq(2,1:NClass)=Value(18,4:(NClass+3))
Aineq(2,NClass+1:(NClass+NVar+1))=0.0*ones(1,NVar+
1)
bineq(2)=illigmax

//-zi+sum(rjwj)-alpha<=0
Aineq(3:(2+NVar),1:NClass)=R_der
Aineq(3:(2+NVar),NClass+1)=-1.0%ones(NVar,1)
Aineq(3:(2+NVar),(NClass+2):(NClass+1+NVar))=

eye(NVar,NVar).*(-1)
bineq(3:(2+NVar))=0.0*ones(1,NVar)
//limites de alocacao

//UbeLb

ALim(1:NClass,1:NClass)=eye(NClass,NClass)

ALim((NClass+1):(2*NClass),1:NClass)=

(-1)*eye(NClass,NClass)
ALim(1:(2*NClass),(NClass+1):(NClass+1+NVar))=
zeros(2*NClass,NVar+1)
bLim(1:NClass,1)=Value(16,4:(NClass+3))."
bLim((NClass+1):(2*NClass),1)=(-
1)*Value(17,4:(NClass+3))."

//zi: zi>=0
ALim((2*NClass+1):(2*NClass+NVar),(NClass+2):(NCla
ss+1+NVar))=

(-1)*eye(NVar,NVar)

ALim((2*NClass+1):(2*NClass+NVar),1:(NClass+1))=

zeros(NVar,NClass+1)

bLim((2*NClass+1):(2*NClass+NVar),1)=zeros(NVar,1)
//ponto minimo risco
[xmin,cvar_min,ehsol|=

karmarkar(Aeq.',beq,
[LILILIL[,[Aineq(2:(2+NVar),);

ALim], [bineq(2:(2+NVar),:);bLim])
ini=R*xmin(1:NClass)
//ponto de maximo retorno [retorno ; cs; illiq ; retorno ;
ci]
matriz(1,1:NClass)=(-1)*Aineq(1,1:NClass)//retorno
matriz(2,1:NClass)=Value(16,4:(3+NClass))//cs
matriz(3,1:NClass)=Value(18,4:(3+NClass))//illiq
matriz(4,1:NClass)=(-1)*Aineq(1,1:NClass)//retorno
matriz(5,1:NClass)=Value(17,4:(3+NClass))//ci
fim=extremo(matriz,illigmax,'d’,NClass)

//fronteira eficiente - min c."*x tq Aeq*x=beq and Ax<=b
and lb<=x<=ub
incr=(fim-ini) /NPontos
avgret=ini+0.00000000001
M=(]
while avgret <= fim

bineq(1)=-(avgret-0.000000000001)

[xoti,cvar,ehsol|=

karmarkar(Aeq.',beq,C,

(L.[L[L[L[],[Aineq;ALim],[bineq;bLim])

if ehsol==1 then

M=[M;[cvar, (-1)*Aineq(1,1:NClass)*xoti(1:NClass),

xoti(1:NClass).']]

end

avgret=avgret+incr
end
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A.4 SOLUCAO DE PROGRAMACAO QUADRATICA ESTOCASTICA

//Numero de classes de ativos
NClass=Value(11,3)
//Monta matriz covaridncia e vetor de retornos
for i=1:NClass
R(i)=Value(
for j=1:NClass
A(i,j)=Value(i+60,j+3)
A_CH(ij)=Value(i+41,j+3)
end
end
//Choleskey Decompose
LTM=choleskey(A_CH,NClass)
b(2)=1; b(3)=illigmax ; me=
//calculo ponto de min vol
[xO0oti,iact,iter,f]=gpsolve(A,p,C(2:3,)),b(
//estatisticas para cortes nas fronteiras

,3+i)

),ci,cs,me-1)

minvol=
for j=1:NClass
for i=1:NClass
minvol = minvol + (x00oti(j)*x00ti(i)*A(i,j))
end
end
maxvol=
for j=1:NClass
if A(j,j)>maxvol then maxvol=A(j,j) end
end

Imax=Value(3,3) ; tamanho=Value(7,3)
concent=Value(6,3) ; maxvol=maxvol”
minvol=minvol”
Imed=round((Imax+1)*concent)
medvol=(maxvol-minvol)*tamanho
intervalol=(medvol-minvol) /Imed
intervalo2=(maxvol-medvol)/(Imax+1-lmed)
//defini¢do de tamanho dos diferentes intervalos
fori=1:lmed

LinhaCorteX(i)= ((i-1)*intervalo1)+minvol
end
for i=lmed: (Imax+1)

LinhaCorteX(i)= ((i-lmed)*intervalo2)+medvol
end
LinhaCorteX=LinhaCorteX."
maxvol=maxvol” minvol=minvol”

for h=1:Value(10,3)
ini= fim=
while (fim-ini)<
//Geracao da distribuicao para cada curva

fori=1:NClass z(i)=rand()end
fori=1:NClass
aux=
for j=1:NClass aux = aux + LTM(i,j)*z(j) end
aux=aux+R(i) ; R_der(i)=aux
end
fori=1:NClass C(1,i)=R_der(i) end
//Definicao de Ini e Fim
ini=
for j=1:NClass
ini = ini + (x0oti(j)*R_der(j))
end

matriz=[R_der.";cs.;Mllliq.;R_der.’;ci.']
fim=extremo(matriz,illigmax,'d’',NClass)
incr=(fim-ini) /(Value(9,3))
avgret=ini+
end
//Solucao markowitz
while avgret <= fim
b(1)=avgret-
[x0,iact,iter,f]=gpsolve(A,p,C,b,ci,cs,me)
retorno= retorno_exp= vol=
fori=1:NClass
retorno = retorno + (x0(i)*R_der(i))
retorno_exp = retorno_exp + (x0(i)*R(i))
for j=1:NClass vol = vol + (x0(i)*x0(j)*A(i,j)) end
end
M=[M;[retorno_exp;retorno;vol;x0]."|
avgret=avgret+incr
end
fori=1:(Imax+1)
pl=LinhaCorteX(i)
[pval,pindx]|=min(abs(M(:,3)-pl))
NR(;,i,h)=M(pindx,1:(NClass+3))
end
CURVAS=[CURVAS;M] ; M=[]
end
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A5 TRATAMENTO ESTATISTICO PROGRAMACAO QUADRATICA ESTOCASTICA

lim_inf=round((h+1)*(1-conf)*0.5)+
lim_sup=round((h+1)*(1+conf)*0.5)-

for j=1:(Imax+1)
//vol da linha de corte j
//VOL_CORTE(j)=(((maxvol-minvol)*(j-1)/Imax) +
minvol)*0.5
for i=1:(NClass+3)
for k=1:Value(
end
//calculos para cada linha
for i=1:(NClass+3)
AVG_WGT_ALL(j,i)=mean(ND(i+1,:)) end
//calculo de C=sum dW1*dW2*Cov1,2
for k=1:Value(10,3)

,3) ND(i+1,k)=NR(i,j k) end

ND(1,k)=
for i=5:(NClass+4)
for ni=5:(NClass+4)

ND(1,k)=ND(1,k)+(ND(ik)-AVG_WGT_ALL(j,i-
))*(ND(ni,k)-AVG_WGT_ALL(j,ni-1))*A(i-4,ni-4)
end
end

end

// decrescente em fungdo de C

ND=gsort(ND,'lc’,'d")

//calculo avg, top, bottom

for i=1:(NClass+4)

AVG_WGT(j,i)=mean(ND(i,lim_inf:lim_sup))

Pavg=
DadoValorRetornaPercentil(AVG_WGT(j,i),ND(i,lim_infl
im_sup))

if Pavg<pctl then

TOP_PERC(j,i)=AVG_WGT(j,i)

else

TOP_PERC(j,i)=DadoPercentilRetornaValor(Pavg-
),ND(ilim_inf:lim_sup))

(pctl*
end
if Pavg>(1-pctl) then

BOT_PERC(j,i)=AVG_WGT(j,i)
else
BOT_PERC(j,i)=DadoPercentilRetornaValor(Pavg+(pctl*
),ND(i,lim_inf:lim_sup))
end
end
end

for k=1:(Imax+1)

VOL_PORT_MEDIO(k)=

for i=1:NClass

for j=1:NClass VOL_PORT_MEDIO(k) =

VOL_PORT_MEDIO(k) +
(A(i,j)*AVG_WGT(k,i+4)*AVG_WGT (k,j+4)) end

end

VOL_PORT_MEDIO(k)=VOL_PORT_MEDIO(k)"
end
VOL_CORTE=LinhaCorteX”
AVG_WGT(:,4)=VOL_PORT_MEDIO
TOP_PERC(:,4)=TOP_PERC(;,4)."
BOT_PERC(;,4)=BOT_PERC(;,4)."
CURVAS(:,3)=CURVAS(;,3).»
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A.6 SOLUCAO PROGRAMACAO ROBUSTA LMI

global matF
global Aport
global Rder
global Eret

global Rfree

function [LME, LMI, OBJ]=evalfunct(XLIST)
[alpha,W]=XLIST(:)
OBjJ=alpha
LME=[]
dim=size(W)(1,1)
F=matF(;,;,1)
for i=1:dim
F=F+W(i)*matF(:,,i+1)
end
H(1,1)=alpha
H(1,2:(1+dim))=W."*Aport
H(2:(1+dim),1)=Aport*W
H(2:(1+dim),2:(1+dim))=Aport
LMI=list(F,H)
dim2=size(Rder)(1,1)
for i=1:dim2
LMI(i+2)=Rder(i,:)*W-
(ones(1,dim)*W)*Rfree-Eret+Rfree
end
endfunction

//Inputs do modelo
illigmax=Value(3,3)+0.00000000001
NPontos=Value(4,3)

NClass=Value(5,3)

Rfree=Value(6,3)

NVar=Value(7,3)

Aport(1:NClass,1:NClass)=Value(58:(57+NClass),4
(3+NClass))

Ach(1:NClass,1:NClass)=Value(39:(38+NClass),4:(
3+NClass))

R=Value(12,4:(3+NClass)).'
illig=Value(18,4:(3+NClass)).’

//Matrizes varidveis globais
matF=zeros(2+NClass,2+NClass,1+NClass)
for i=1:NClass

matF(i,i,i+1)=1.0
end
matF(1+NClass,1+NClass,1)=illigmax
matF(2+NClass,2+NClass,1)=1
matF(1+NClass,1+NClass,2:(1+NClass))=-illiq
matF(2+NClass,2+NClass,2:(1+NClass))=-
ones(NClass,1)

//geragdo de conjuntos de retornos equiprovdveis
LTM=choleskey(Ach,NClass)
Rder=retornos(NClass,NVar,LTM,R)

//ponto de minimo retorno
ini=Rfree
fim=0.085

//fronteira eficiente
incr=(fim-ini) /NPontos
avgret=ini+0.00000000001
M=[]
X0=list(max(Aport),(1/NClass)*ones(NClass,1))
while avgret <= fim
Eret=avgret
XLIST=Imisolver(X0,evalfunct)
XLIST=XLIST(2)

M=[M;XLIST., XLIST."*R,(XLIST.*Aport*XLIST)"0.
5]

avgret=avgret+incr
end
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APENDICE B

Neste capitulo sdo expostos alguns desenvolvimentos complementares aqueles

apresentados no texto.
B.1 ESTIMADOR COERENTE

Um estimador considerado coerente € aquele em que a probabilidade do valor absoluto
de o seu desvio em relagéo ao valor real ser menor que um valor muito pequeno (6 > 0) tende
a 1 quando o tamanho da amostra tende a infinito.

P(la — «af <6)m1

Onde,

- P(X) é a probabilidade de ocorréncia do evento X;

- a € 0 valor que se pretende estimar;

- @ € um estimador coerente de «;

- 6 € um escalar positivo muito pequeno;

- n € o tamanho da amostra.
B.2 CONVEXIDADE DA FUN(;AO OBJETIVO

Uma forma de verificar que a funcéo objetivo f(w) = a,(w) = w'ow € convexa é

através do célculo da matriz Hessiana V2f (w).
011 - Oy
Onj ** Onn
Segundo Silva (2005), ao respeitar as trés condi¢cdes seguintes, conclui-se que C é
conjunto convexo.
Ora, se vale que (Silva, 2005):
(1) f continua definidaem C € R™, f:C - R
2 VZfw) 20

(3) todos os autovalores da matriz Hessiana sdo maiores ou iguais a zero

B.3 CONDICOES DE KKT
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Para verificar se a solucdo do problema de otimizacdo linear quadratico € o minimo
global, pode-se utilizar as condi¢des de KKT (Silva, 2005):
(1) Factibilidade: g;(x*) — b, é factivel para as restri¢des de igualdade e desigualdade
(2) Sem direcdo de maior aproximacéo da funcéo objetivo do minimo em que a solucgéo
continue factivel: Vf(x*) — Y™, A;g;(x*) =0 para as restricbes de igualdade e
desigualdade
(3) Folga Complementar: 4;(g;(x*) — b;) = 0 para todo i de restrigdes de desigualdade

(4) A;" = 0 para todo i de restri¢des de desigualdade

Onde,
- g sao as restricoes;
- b é 0 vetor de termos independentes;

- x*eRY é solucdo 6tima.

B.4 GERACAO DE VALORES ALEATORIOS PARA DISTRIBUICAO NORMAL
MULTIVARIADA

Na resolugdo dos modelos, foi utilizada geracao de valores aleatérios de taxa de retorno
atraves de simulacbes de Monte Carlo. Estes valores devem respeitar a matriz de covariancia e
0s parametros de uma distribuicdo normal N (u, o) do retorno historico de cada investimento.

Primeiramente é necessario fazer o calculo da matriz de covariancia das taxas de retorno
para o intervalo de tempo que se pretende otimizar. Note que esta matriz € uma métrica de
incerteza do pardmetro de taxa de retorno, diferentemente daquela utilizada como métrica de
risco, que representa a variancia na unidade minima de tempo considerada.

A seguir € necessario fazer a decomposicao desta matriz de covariancia da incerteza, tal
que ela possa ser escrita unicamente como o produto de uma matriz triangular inferior com
elementos positivos na diagonal por sua transposta.

o2 = GG’

Onde,

- GeRM x RN é matriz triangular inferior com elementos positivos na diagonal;

- o.52€RY x RN ¢ a matriz de covariancia das taxas de retorno no intervalo de tempo
considerado para a otimizacao;

- gij € elemento que compde G.
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Como a matriz de covariancia é simétrica e positiva definida, ou seja, ¢ = ' € 0s
menores principais tém determinante positivo (Critério Sylvestre), pode-se fazé-lo através do

método Cholesky.

a.
J11 = +Ja11 |( gin = 1 parai=12,..,N
4 9_11
a; =Y 1g. g
Lgij _ G k=19ik9jk PAraj = 2,3, )i
9jj

Posteriormente a matriz decomposta € multiplicada por um vetor de variaveis aleatérias
normais de média zero e desvio-padrdo unitario. O resultado, entdo, é somado ao vetor de
retorno médio das estratégias de investimento. Dessa forma, se obtém, para cada vetor gerado
aleatoriamente, um valor de simulacéo.

Rier =Gz +71
Onde,
- zeRYN é o vetor de valores aleatérios normais N(1,0);

- Ry.-¢RYN é um vetor que faz parte do conjunto gerado para a simulacéo.
B.5 LINEARIZAQAO UTILIZANDO O COMPLEMENTO DE SCHUR

Pretende-se linearizar a restricdo utilizando o complemento de Schur.
wolw < a paraj =12, ..,n
Para isso pode-se reescrever a restri¢do
waDw = waeWe® 'gDw < a
a® >0
e fazer uso da seguinte equivaléncia.

[Q(x) S(x)
S(x)' R(x)

Note gue se for considerado que
Q(x) = a,S(x) =wo® e R(x) = ¢V
entdo a restricdo é equivalente a formulacéo

[ a wa?
cDw i)

R(x)>0

] > 0 Q(x) e R(x) simétricas & 0(x) — SCORX)1S(x)" > 0

>0 paraj=12,..,n

B.6 APLICACAO DE MULTIPLICADORES DE LAGRANGE PARA A SOLUCAO DO
MODELO DE MARKOWITZ PARA UM CASO PARTICULAR
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Dada a formulacéo do problema classico de Markowitz, em que
mvjn a?(w) = w'ow
5.a. W'r = rtpin
Aw < b,
pode-se observar que no caso particular de limitacdo das restricGes a uma unica
igualdade, ou seja,
se Aw < b equivale a A,w = b,,
é possivel transformar o problema em um sistema de equacdes lineares atraves de

multiplicadores de Lagrange.

1
L==-wow—AW'r —rt,in) — u(A.w — b,)

2
Onde,
- A.€eR" e b, €R representam a restricdo de igualdade, tipicamente 4, = [1 ... 1]e
b, = 1;
- A e u sdo escalares que se tornam incdgnitas no sistema.
Considerando, entéo, aavii = 0 para cada uma das estratégias, o problema pode ser

resolvido para o seguinte sistema linear.

wao —2ir—2u =0
W'r = rtyin
A.w = b,

B.7 BREVE DESCRICAO DAS CLASSES DE ATIVOS CONSIDERADAS PELO
ENDOWMENT DE YALE E NAO ABORDADAS NO TEXTO

Dentre as classes de ativos consideradas pelo endowment de Yale e ndo consideradas
neste trabalho de formatura estéo leveraged buyouts (LBO), recursos naturais e venture capital.
No caso de leveraged buyouts, trata-se de uma transacao financeira que inclui crédito e acéo,
de forma que uma compra de crédito financia a aquisicao do controle acionario de uma empresa.
No caso de recursos naturais, trata-se do investimento em setores de petréleo e gas, agricultura
e negocios florestais. No caso de venture capital, o investimento é analogo a compra de ac¢oes

de empresas privadas, mas em estagios iniciais do desenvolvimento da empresa.
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Neste capitulo sdo expostos graficos complementares aos apresentados nas segdes

principais.

C.1 VALIDACAO MODELOS MARKOWITZ

Tabela 7 Verificacdo dos modelos de Markowitz
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Fonte: Elaborado pela autora
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C.2 ALOCACAO DOS PORTFOLIOS DE ENDOWMENTS

Alocacdo meédia dos cinco maiores endowments de instituicdes de ensino dos EUA, que
inclui Harvard, Yale, University of Texas, Princeton e Stanford.

Gréfico 32 Alocagdes entre classes de ativos dos 5 maiores endowments dos EUA

Alocacdo classes de ativos 5 maiores endowments dos EUA
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Fonte: Elaborado pela autora a partir de dados do terminal Bloomberg



